| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- import cv2
- import PIL.Image
- import torch
- from loguru import logger
- from sorawm.iopaint.schema import InpaintRequest, ModelType
- from .base import DiffusionInpaintModel
- from .helper.cpu_text_encoder import CPUTextEncoderWrapper
- from .original_sd_configs import get_config_files
- from .utils import (
- enable_low_mem,
- get_torch_dtype,
- handle_from_pretrained_exceptions,
- is_local_files_only,
- )
- class SD(DiffusionInpaintModel):
- pad_mod = 8
- min_size = 512
- lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
- def init_model(self, device: torch.device, **kwargs):
- from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
- use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
- model_kwargs = {
- **kwargs.get("pipe_components", {}),
- "local_files_only": is_local_files_only(**kwargs),
- }
- disable_nsfw_checker = kwargs.get("disable_nsfw", False) or kwargs.get(
- "cpu_offload", False
- )
- if disable_nsfw_checker:
- logger.info("Disable Stable Diffusion Model NSFW checker")
- model_kwargs.update(
- dict(
- safety_checker=None,
- feature_extractor=None,
- requires_safety_checker=False,
- )
- )
- if self.model_info.is_single_file_diffusers:
- if self.model_info.model_type == ModelType.DIFFUSERS_SD:
- model_kwargs["num_in_channels"] = 4
- else:
- model_kwargs["num_in_channels"] = 9
- self.model = StableDiffusionInpaintPipeline.from_single_file(
- self.model_id_or_path,
- torch_dtype=torch_dtype,
- load_safety_checker=not disable_nsfw_checker,
- original_config_file=get_config_files()["v1"],
- **model_kwargs,
- )
- else:
- self.model = handle_from_pretrained_exceptions(
- StableDiffusionInpaintPipeline.from_pretrained,
- pretrained_model_name_or_path=self.model_id_or_path,
- variant="fp16",
- torch_dtype=torch_dtype,
- **model_kwargs,
- )
- enable_low_mem(self.model, kwargs.get("low_mem", False))
- if kwargs.get("cpu_offload", False) and use_gpu:
- logger.info("Enable sequential cpu offload")
- self.model.enable_sequential_cpu_offload(gpu_id=0)
- else:
- self.model = self.model.to(device)
- if kwargs.get("sd_cpu_textencoder", False):
- logger.info("Run Stable Diffusion TextEncoder on CPU")
- self.model.text_encoder = CPUTextEncoderWrapper(
- self.model.text_encoder, torch_dtype
- )
- self.callback = kwargs.pop("callback", None)
- def forward(self, image, mask, config: InpaintRequest):
- """Input image and output image have same size
- image: [H, W, C] RGB
- mask: [H, W, 1] 255 means area to repaint
- return: BGR IMAGE
- """
- self.set_scheduler(config)
- img_h, img_w = image.shape[:2]
- output = self.model(
- image=PIL.Image.fromarray(image),
- prompt=config.prompt,
- negative_prompt=config.negative_prompt,
- mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
- num_inference_steps=config.sd_steps,
- strength=config.sd_strength,
- guidance_scale=config.sd_guidance_scale,
- output_type="np",
- callback_on_step_end=self.callback,
- height=img_h,
- width=img_w,
- generator=torch.manual_seed(config.sd_seed),
- ).images[0]
- output = (output * 255).round().astype("uint8")
- output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
- return output
- class SD15(SD):
- name = "runwayml/stable-diffusion-inpainting"
- model_id_or_path = "runwayml/stable-diffusion-inpainting"
- class Anything4(SD):
- name = "Sanster/anything-4.0-inpainting"
- model_id_or_path = "Sanster/anything-4.0-inpainting"
- class RealisticVision14(SD):
- name = "Sanster/Realistic_Vision_V1.4-inpainting"
- model_id_or_path = "Sanster/Realistic_Vision_V1.4-inpainting"
- class SD2(SD):
- name = "stabilityai/stable-diffusion-2-inpainting"
- model_id_or_path = "stabilityai/stable-diffusion-2-inpainting"
|