| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- import cv2
- import PIL.Image
- import torch
- from diffusers import ControlNetModel
- from loguru import logger
- from sorawm.iopaint.schema import InpaintRequest, ModelType
- from .base import DiffusionInpaintModel
- from .helper.controlnet_preprocess import (
- make_canny_control_image,
- make_depth_control_image,
- make_inpaint_control_image,
- make_openpose_control_image,
- )
- from .helper.cpu_text_encoder import CPUTextEncoderWrapper
- from .original_sd_configs import get_config_files
- from .utils import (
- enable_low_mem,
- get_scheduler,
- get_torch_dtype,
- handle_from_pretrained_exceptions,
- is_local_files_only,
- )
- class ControlNet(DiffusionInpaintModel):
- name = "controlnet"
- pad_mod = 8
- min_size = 512
- @property
- def lcm_lora_id(self):
- if self.model_info.model_type in [
- ModelType.DIFFUSERS_SD,
- ModelType.DIFFUSERS_SD_INPAINT,
- ]:
- return "latent-consistency/lcm-lora-sdv1-5"
- if self.model_info.model_type in [
- ModelType.DIFFUSERS_SDXL,
- ModelType.DIFFUSERS_SDXL_INPAINT,
- ]:
- return "latent-consistency/lcm-lora-sdxl"
- raise NotImplementedError(f"Unsupported controlnet lcm model {self.model_info}")
- def init_model(self, device: torch.device, **kwargs):
- model_info = kwargs["model_info"]
- controlnet_method = kwargs["controlnet_method"]
- self.model_info = model_info
- self.controlnet_method = controlnet_method
- model_kwargs = {
- **kwargs.get("pipe_components", {}),
- "local_files_only": is_local_files_only(**kwargs),
- }
- self.local_files_only = model_kwargs["local_files_only"]
- disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get(
- "cpu_offload", False
- )
- if disable_nsfw_checker:
- logger.info("Disable Stable Diffusion Model NSFW checker")
- model_kwargs.update(
- dict(
- safety_checker=None,
- feature_extractor=None,
- requires_safety_checker=False,
- )
- )
- use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
- self.torch_dtype = torch_dtype
- original_config_file_name = "v1"
- if model_info.model_type in [
- ModelType.DIFFUSERS_SD,
- ModelType.DIFFUSERS_SD_INPAINT,
- ]:
- from diffusers import StableDiffusionControlNetInpaintPipeline as PipeClass
- original_config_file_name = "v1"
- elif model_info.model_type in [
- ModelType.DIFFUSERS_SDXL,
- ModelType.DIFFUSERS_SDXL_INPAINT,
- ]:
- from diffusers import (
- StableDiffusionXLControlNetInpaintPipeline as PipeClass,
- )
- original_config_file_name = "xl"
- controlnet = ControlNetModel.from_pretrained(
- pretrained_model_name_or_path=controlnet_method,
- local_files_only=model_kwargs["local_files_only"],
- torch_dtype=self.torch_dtype,
- )
- if model_info.is_single_file_diffusers:
- if self.model_info.model_type == ModelType.DIFFUSERS_SD:
- model_kwargs["num_in_channels"] = 4
- else:
- model_kwargs["num_in_channels"] = 9
- self.model = PipeClass.from_single_file(
- model_info.path,
- controlnet=controlnet,
- load_safety_checker=not disable_nsfw_checker,
- torch_dtype=torch_dtype,
- original_config_file=get_config_files()[original_config_file_name],
- **model_kwargs,
- )
- else:
- self.model = handle_from_pretrained_exceptions(
- PipeClass.from_pretrained,
- pretrained_model_name_or_path=model_info.path,
- controlnet=controlnet,
- variant="fp16",
- torch_dtype=torch_dtype,
- **model_kwargs,
- )
- enable_low_mem(self.model, kwargs.get("low_mem", False))
- if kwargs.get("cpu_offload", False) and use_gpu:
- logger.info("Enable sequential cpu offload")
- self.model.enable_sequential_cpu_offload(gpu_id=0)
- else:
- self.model = self.model.to(device)
- if kwargs["sd_cpu_textencoder"]:
- logger.info("Run Stable Diffusion TextEncoder on CPU")
- self.model.text_encoder = CPUTextEncoderWrapper(
- self.model.text_encoder, torch_dtype
- )
- self.callback = kwargs.pop("callback", None)
- def switch_controlnet_method(self, new_method: str):
- self.controlnet_method = new_method
- controlnet = ControlNetModel.from_pretrained(
- new_method,
- local_files_only=self.local_files_only,
- torch_dtype=self.torch_dtype,
- ).to(self.model.device)
- self.model.controlnet = controlnet
- def _get_control_image(self, image, mask):
- if "canny" in self.controlnet_method:
- control_image = make_canny_control_image(image)
- elif "openpose" in self.controlnet_method:
- control_image = make_openpose_control_image(image)
- elif "depth" in self.controlnet_method:
- control_image = make_depth_control_image(image)
- elif "inpaint" in self.controlnet_method:
- control_image = make_inpaint_control_image(image, mask)
- else:
- raise NotImplementedError(f"{self.controlnet_method} not implemented")
- return control_image
- def forward(self, image, mask, config: InpaintRequest):
- """Input image and output image have same size
- image: [H, W, C] RGB
- mask: [H, W, 1] 255 means area to repaint
- return: BGR IMAGE
- """
- scheduler_config = self.model.scheduler.config
- scheduler = get_scheduler(config.sd_sampler, scheduler_config)
- self.model.scheduler = scheduler
- img_h, img_w = image.shape[:2]
- control_image = self._get_control_image(image, mask)
- mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
- image = PIL.Image.fromarray(image)
- output = self.model(
- image=image,
- mask_image=mask_image,
- control_image=control_image,
- prompt=config.prompt,
- negative_prompt=config.negative_prompt,
- num_inference_steps=config.sd_steps,
- guidance_scale=config.sd_guidance_scale,
- output_type="np",
- callback_on_step_end=self.callback,
- height=img_h,
- width=img_w,
- generator=torch.manual_seed(config.sd_seed),
- controlnet_conditioning_scale=config.controlnet_conditioning_scale,
- ).images[0]
- output = (output * 255).round().astype("uint8")
- output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
- return output
|