| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- import cv2
- import numpy as np
- import PIL.Image
- import torch
- from loguru import logger
- from ...const import SDXL_BRUSHNET_CHOICES
- from ...schema import InpaintRequest, ModelType
- from ..base import DiffusionInpaintModel
- from ..helper.cpu_text_encoder import CPUTextEncoderWrapper
- from ..original_sd_configs import get_config_files
- from ..utils import (
- enable_low_mem,
- get_torch_dtype,
- handle_from_pretrained_exceptions,
- is_local_files_only,
- )
- from .brushnet import BrushNetModel
- from .brushnet_unet_forward import brushnet_unet_forward
- from .unet_2d_blocks import (
- CrossAttnDownBlock2D_forward,
- CrossAttnUpBlock2D_forward,
- DownBlock2D_forward,
- UpBlock2D_forward,
- )
- class BrushNetXLWrapper(DiffusionInpaintModel):
- pad_mod = 8
- min_size = 1024
- support_brushnet = True
- support_lcm_lora = False
- def init_model(self, device: torch.device, **kwargs):
- from .pipeline_brushnet_sd_xl import StableDiffusionXLBrushNetPipeline
- self.model_info = kwargs["model_info"]
- self.brushnet_xl_method = SDXL_BRUSHNET_CHOICES[0]
- # self.brushnet_xl_method = kwargs["brushnet_xl_method"]
- use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
- self.torch_dtype = torch_dtype
- model_kwargs = {
- **kwargs.get("pipe_components", {}),
- "local_files_only": is_local_files_only(**kwargs),
- }
- self.local_files_only = model_kwargs["local_files_only"]
- disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get(
- "cpu_offload", False
- )
- if disable_nsfw_checker:
- logger.info("Disable Stable Diffusion Model NSFW checker")
- model_kwargs.update(
- dict(
- safety_checker=None,
- feature_extractor=None,
- requires_safety_checker=False,
- )
- )
- logger.info(f"Loading BrushNet model from {self.brushnet_xl_method}")
- brushnet = BrushNetModel.from_pretrained(
- self.brushnet_xl_method, torch_dtype=torch_dtype
- )
- if self.model_info.is_single_file_diffusers:
- if self.model_info.model_type == ModelType.DIFFUSERS_SD:
- model_kwargs["num_in_channels"] = 4
- else:
- model_kwargs["num_in_channels"] = 9
- self.model = StableDiffusionXLBrushNetPipeline.from_single_file(
- self.model_id_or_path,
- torch_dtype=torch_dtype,
- load_safety_checker=not disable_nsfw_checker,
- original_config_file=get_config_files()["v1"],
- brushnet=brushnet,
- **model_kwargs,
- )
- else:
- self.model = handle_from_pretrained_exceptions(
- StableDiffusionXLBrushNetPipeline.from_pretrained,
- pretrained_model_name_or_path=self.model_id_or_path,
- variant="fp16",
- torch_dtype=torch_dtype,
- brushnet=brushnet,
- **model_kwargs,
- )
- enable_low_mem(self.model, kwargs.get("low_mem", False))
- if kwargs.get("cpu_offload", False) and use_gpu:
- logger.info("Enable sequential cpu offload")
- self.model.enable_sequential_cpu_offload(gpu_id=0)
- else:
- self.model = self.model.to(device)
- if kwargs["sd_cpu_textencoder"]:
- logger.info("Run Stable Diffusion TextEncoder on CPU")
- self.model.text_encoder = CPUTextEncoderWrapper(
- self.model.text_encoder, torch_dtype
- )
- self.callback = kwargs.pop("callback", None)
- # Monkey patch the forward method of the UNet to use the brushnet_unet_forward method
- self.model.unet.forward = brushnet_unet_forward.__get__(
- self.model.unet, self.model.unet.__class__
- )
- for down_block in self.model.brushnet.down_blocks:
- down_block.forward = DownBlock2D_forward.__get__(
- down_block, down_block.__class__
- )
- for up_block in self.model.brushnet.up_blocks:
- up_block.forward = UpBlock2D_forward.__get__(up_block, up_block.__class__)
- # Monkey patch unet down_blocks to use CrossAttnDownBlock2D_forward
- for down_block in self.model.unet.down_blocks:
- if down_block.__class__.__name__ == "CrossAttnDownBlock2D":
- down_block.forward = CrossAttnDownBlock2D_forward.__get__(
- down_block, down_block.__class__
- )
- else:
- down_block.forward = DownBlock2D_forward.__get__(
- down_block, down_block.__class__
- )
- for up_block in self.model.unet.up_blocks:
- if up_block.__class__.__name__ == "CrossAttnUpBlock2D":
- up_block.forward = CrossAttnUpBlock2D_forward.__get__(
- up_block, up_block.__class__
- )
- else:
- up_block.forward = UpBlock2D_forward.__get__(
- up_block, up_block.__class__
- )
- def switch_brushnet_method(self, new_method: str):
- self.brushnet_method = new_method
- brushnet_xl = BrushNetModel.from_pretrained(
- new_method,
- local_files_only=self.local_files_only,
- torch_dtype=self.torch_dtype,
- ).to(self.model.device)
- self.model.brushnet = brushnet_xl
- def forward(self, image, mask, config: InpaintRequest):
- """Input image and output image have same size
- image: [H, W, C] RGB
- mask: [H, W, 1] 255 means area to repaint
- return: BGR IMAGE
- """
- self.set_scheduler(config)
- img_h, img_w = image.shape[:2]
- normalized_mask = mask[:, :].astype("float32") / 255.0
- image = image * (1 - normalized_mask)
- image = image.astype(np.uint8)
- output = self.model(
- image=PIL.Image.fromarray(image),
- prompt=config.prompt,
- negative_prompt=config.negative_prompt,
- mask=PIL.Image.fromarray(mask[:, :, -1], mode="L").convert("RGB"),
- num_inference_steps=config.sd_steps,
- # strength=config.sd_strength,
- guidance_scale=config.sd_guidance_scale,
- output_type="np",
- callback_on_step_end=self.callback,
- height=img_h,
- width=img_w,
- generator=torch.manual_seed(config.sd_seed),
- brushnet_conditioning_scale=config.brushnet_conditioning_scale,
- ).images[0]
- output = (output * 255).round().astype("uint8")
- output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
- return output
|