| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 |
- from contextlib import contextmanager
- import torch
- import torch.nn.functional as F
- from sorawm.iopaint.model.anytext.ldm.modules.diffusionmodules.model import (
- Decoder,
- Encoder,
- )
- from sorawm.iopaint.model.anytext.ldm.modules.distributions.distributions import (
- DiagonalGaussianDistribution,
- )
- from sorawm.iopaint.model.anytext.ldm.modules.ema import LitEma
- from sorawm.iopaint.model.anytext.ldm.util import instantiate_from_config
- class AutoencoderKL(torch.nn.Module):
- def __init__(
- self,
- ddconfig,
- lossconfig,
- embed_dim,
- ckpt_path=None,
- ignore_keys=[],
- image_key="image",
- colorize_nlabels=None,
- monitor=None,
- ema_decay=None,
- learn_logvar=False,
- ):
- super().__init__()
- self.learn_logvar = learn_logvar
- self.image_key = image_key
- self.encoder = Encoder(**ddconfig)
- self.decoder = Decoder(**ddconfig)
- self.loss = instantiate_from_config(lossconfig)
- assert ddconfig["double_z"]
- self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
- self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
- self.embed_dim = embed_dim
- if colorize_nlabels is not None:
- assert type(colorize_nlabels) == int
- self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
- if monitor is not None:
- self.monitor = monitor
- self.use_ema = ema_decay is not None
- if self.use_ema:
- self.ema_decay = ema_decay
- assert 0.0 < ema_decay < 1.0
- self.model_ema = LitEma(self, decay=ema_decay)
- print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
- if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
- def init_from_ckpt(self, path, ignore_keys=list()):
- sd = torch.load(path, map_location="cpu")["state_dict"]
- keys = list(sd.keys())
- for k in keys:
- for ik in ignore_keys:
- if k.startswith(ik):
- print("Deleting key {} from state_dict.".format(k))
- del sd[k]
- self.load_state_dict(sd, strict=False)
- print(f"Restored from {path}")
- @contextmanager
- def ema_scope(self, context=None):
- if self.use_ema:
- self.model_ema.store(self.parameters())
- self.model_ema.copy_to(self)
- if context is not None:
- print(f"{context}: Switched to EMA weights")
- try:
- yield None
- finally:
- if self.use_ema:
- self.model_ema.restore(self.parameters())
- if context is not None:
- print(f"{context}: Restored training weights")
- def on_train_batch_end(self, *args, **kwargs):
- if self.use_ema:
- self.model_ema(self)
- def encode(self, x):
- h = self.encoder(x)
- moments = self.quant_conv(h)
- posterior = DiagonalGaussianDistribution(moments)
- return posterior
- def decode(self, z):
- z = self.post_quant_conv(z)
- dec = self.decoder(z)
- return dec
- def forward(self, input, sample_posterior=True):
- posterior = self.encode(input)
- if sample_posterior:
- z = posterior.sample()
- else:
- z = posterior.mode()
- dec = self.decode(z)
- return dec, posterior
- def get_input(self, batch, k):
- x = batch[k]
- if len(x.shape) == 3:
- x = x[..., None]
- x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
- return x
- def training_step(self, batch, batch_idx, optimizer_idx):
- inputs = self.get_input(batch, self.image_key)
- reconstructions, posterior = self(inputs)
- if optimizer_idx == 0:
- # train encoder+decoder+logvar
- aeloss, log_dict_ae = self.loss(
- inputs,
- reconstructions,
- posterior,
- optimizer_idx,
- self.global_step,
- last_layer=self.get_last_layer(),
- split="train",
- )
- self.log(
- "aeloss",
- aeloss,
- prog_bar=True,
- logger=True,
- on_step=True,
- on_epoch=True,
- )
- self.log_dict(
- log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False
- )
- return aeloss
- if optimizer_idx == 1:
- # train the discriminator
- discloss, log_dict_disc = self.loss(
- inputs,
- reconstructions,
- posterior,
- optimizer_idx,
- self.global_step,
- last_layer=self.get_last_layer(),
- split="train",
- )
- self.log(
- "discloss",
- discloss,
- prog_bar=True,
- logger=True,
- on_step=True,
- on_epoch=True,
- )
- self.log_dict(
- log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False
- )
- return discloss
- def validation_step(self, batch, batch_idx):
- log_dict = self._validation_step(batch, batch_idx)
- with self.ema_scope():
- log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
- return log_dict
- def _validation_step(self, batch, batch_idx, postfix=""):
- inputs = self.get_input(batch, self.image_key)
- reconstructions, posterior = self(inputs)
- aeloss, log_dict_ae = self.loss(
- inputs,
- reconstructions,
- posterior,
- 0,
- self.global_step,
- last_layer=self.get_last_layer(),
- split="val" + postfix,
- )
- discloss, log_dict_disc = self.loss(
- inputs,
- reconstructions,
- posterior,
- 1,
- self.global_step,
- last_layer=self.get_last_layer(),
- split="val" + postfix,
- )
- self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
- self.log_dict(log_dict_ae)
- self.log_dict(log_dict_disc)
- return self.log_dict
- def configure_optimizers(self):
- lr = self.learning_rate
- ae_params_list = (
- list(self.encoder.parameters())
- + list(self.decoder.parameters())
- + list(self.quant_conv.parameters())
- + list(self.post_quant_conv.parameters())
- )
- if self.learn_logvar:
- print(f"{self.__class__.__name__}: Learning logvar")
- ae_params_list.append(self.loss.logvar)
- opt_ae = torch.optim.Adam(ae_params_list, lr=lr, betas=(0.5, 0.9))
- opt_disc = torch.optim.Adam(
- self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)
- )
- return [opt_ae, opt_disc], []
- def get_last_layer(self):
- return self.decoder.conv_out.weight
- @torch.no_grad()
- def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
- log = dict()
- x = self.get_input(batch, self.image_key)
- x = x.to(self.device)
- if not only_inputs:
- xrec, posterior = self(x)
- if x.shape[1] > 3:
- # colorize with random projection
- assert xrec.shape[1] > 3
- x = self.to_rgb(x)
- xrec = self.to_rgb(xrec)
- log["samples"] = self.decode(torch.randn_like(posterior.sample()))
- log["reconstructions"] = xrec
- if log_ema or self.use_ema:
- with self.ema_scope():
- xrec_ema, posterior_ema = self(x)
- if x.shape[1] > 3:
- # colorize with random projection
- assert xrec_ema.shape[1] > 3
- xrec_ema = self.to_rgb(xrec_ema)
- log["samples_ema"] = self.decode(
- torch.randn_like(posterior_ema.sample())
- )
- log["reconstructions_ema"] = xrec_ema
- log["inputs"] = x
- return log
- def to_rgb(self, x):
- assert self.image_key == "segmentation"
- if not hasattr(self, "colorize"):
- self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
- x = F.conv2d(x, weight=self.colorize)
- x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
- return x
- class IdentityFirstStage(torch.nn.Module):
- def __init__(self, *args, vq_interface=False, **kwargs):
- self.vq_interface = vq_interface
- super().__init__()
- def encode(self, x, *args, **kwargs):
- return x
- def decode(self, x, *args, **kwargs):
- return x
- def quantize(self, x, *args, **kwargs):
- if self.vq_interface:
- return x, None, [None, None, None]
- return x
- def forward(self, x, *args, **kwargs):
- return x
|