| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302 |
- """
- Copyright (c) Alibaba, Inc. and its affiliates.
- """
- import math
- import os
- import time
- import traceback
- import cv2
- import numpy as np
- import torch
- import torch.nn.functional as F
- from easydict import EasyDict as edict
- from sorawm.iopaint.model.anytext.ocr_recog.RecModel import RecModel
- def min_bounding_rect(img):
- ret, thresh = cv2.threshold(img, 127, 255, 0)
- contours, hierarchy = cv2.findContours(
- thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
- )
- if len(contours) == 0:
- print("Bad contours, using fake bbox...")
- return np.array([[0, 0], [100, 0], [100, 100], [0, 100]])
- max_contour = max(contours, key=cv2.contourArea)
- rect = cv2.minAreaRect(max_contour)
- box = cv2.boxPoints(rect)
- box = np.int0(box)
- # sort
- x_sorted = sorted(box, key=lambda x: x[0])
- left = x_sorted[:2]
- right = x_sorted[2:]
- left = sorted(left, key=lambda x: x[1])
- (tl, bl) = left
- right = sorted(right, key=lambda x: x[1])
- (tr, br) = right
- if tl[1] > bl[1]:
- (tl, bl) = (bl, tl)
- if tr[1] > br[1]:
- (tr, br) = (br, tr)
- return np.array([tl, tr, br, bl])
- def create_predictor(model_dir=None, model_lang="ch", is_onnx=False):
- model_file_path = model_dir
- if model_file_path is not None and not os.path.exists(model_file_path):
- raise ValueError("not find model file path {}".format(model_file_path))
- if is_onnx:
- import onnxruntime as ort
- sess = ort.InferenceSession(
- model_file_path, providers=["CPUExecutionProvider"]
- ) # 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
- return sess
- else:
- if model_lang == "ch":
- n_class = 6625
- elif model_lang == "en":
- n_class = 97
- else:
- raise ValueError(f"Unsupported OCR recog model_lang: {model_lang}")
- rec_config = edict(
- in_channels=3,
- backbone=edict(
- type="MobileNetV1Enhance",
- scale=0.5,
- last_conv_stride=[1, 2],
- last_pool_type="avg",
- ),
- neck=edict(
- type="SequenceEncoder",
- encoder_type="svtr",
- dims=64,
- depth=2,
- hidden_dims=120,
- use_guide=True,
- ),
- head=edict(
- type="CTCHead",
- fc_decay=0.00001,
- out_channels=n_class,
- return_feats=True,
- ),
- )
- rec_model = RecModel(rec_config)
- if model_file_path is not None:
- rec_model.load_state_dict(torch.load(model_file_path, map_location="cpu"))
- rec_model.eval()
- return rec_model.eval()
- def _check_image_file(path):
- img_end = {"jpg", "bmp", "png", "jpeg", "rgb", "tif", "tiff"}
- return any([path.lower().endswith(e) for e in img_end])
- def get_image_file_list(img_file):
- imgs_lists = []
- if img_file is None or not os.path.exists(img_file):
- raise Exception("not found any img file in {}".format(img_file))
- if os.path.isfile(img_file) and _check_image_file(img_file):
- imgs_lists.append(img_file)
- elif os.path.isdir(img_file):
- for single_file in os.listdir(img_file):
- file_path = os.path.join(img_file, single_file)
- if os.path.isfile(file_path) and _check_image_file(file_path):
- imgs_lists.append(file_path)
- if len(imgs_lists) == 0:
- raise Exception("not found any img file in {}".format(img_file))
- imgs_lists = sorted(imgs_lists)
- return imgs_lists
- class TextRecognizer(object):
- def __init__(self, args, predictor):
- self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
- self.rec_batch_num = args.rec_batch_num
- self.predictor = predictor
- self.chars = self.get_char_dict(args.rec_char_dict_path)
- self.char2id = {x: i for i, x in enumerate(self.chars)}
- self.is_onnx = not isinstance(self.predictor, torch.nn.Module)
- self.use_fp16 = args.use_fp16
- # img: CHW
- def resize_norm_img(self, img, max_wh_ratio):
- imgC, imgH, imgW = self.rec_image_shape
- assert imgC == img.shape[0]
- imgW = int((imgH * max_wh_ratio))
- h, w = img.shape[1:]
- ratio = w / float(h)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(math.ceil(imgH * ratio))
- resized_image = torch.nn.functional.interpolate(
- img.unsqueeze(0),
- size=(imgH, resized_w),
- mode="bilinear",
- align_corners=True,
- )
- resized_image /= 255.0
- resized_image -= 0.5
- resized_image /= 0.5
- padding_im = torch.zeros((imgC, imgH, imgW), dtype=torch.float32).to(img.device)
- padding_im[:, :, 0:resized_w] = resized_image[0]
- return padding_im
- # img_list: list of tensors with shape chw 0-255
- def pred_imglist(self, img_list, show_debug=False, is_ori=False):
- img_num = len(img_list)
- assert img_num > 0
- # Calculate the aspect ratio of all text bars
- width_list = []
- for img in img_list:
- width_list.append(img.shape[2] / float(img.shape[1]))
- # Sorting can speed up the recognition process
- indices = torch.from_numpy(np.argsort(np.array(width_list)))
- batch_num = self.rec_batch_num
- preds_all = [None] * img_num
- preds_neck_all = [None] * img_num
- for beg_img_no in range(0, img_num, batch_num):
- end_img_no = min(img_num, beg_img_no + batch_num)
- norm_img_batch = []
- imgC, imgH, imgW = self.rec_image_shape[:3]
- max_wh_ratio = imgW / imgH
- for ino in range(beg_img_no, end_img_no):
- h, w = img_list[indices[ino]].shape[1:]
- if h > w * 1.2:
- img = img_list[indices[ino]]
- img = torch.transpose(img, 1, 2).flip(dims=[1])
- img_list[indices[ino]] = img
- h, w = img.shape[1:]
- # wh_ratio = w * 1.0 / h
- # max_wh_ratio = max(max_wh_ratio, wh_ratio) # comment to not use different ratio
- for ino in range(beg_img_no, end_img_no):
- norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio)
- if self.use_fp16:
- norm_img = norm_img.half()
- norm_img = norm_img.unsqueeze(0)
- norm_img_batch.append(norm_img)
- norm_img_batch = torch.cat(norm_img_batch, dim=0)
- if show_debug:
- for i in range(len(norm_img_batch)):
- _img = norm_img_batch[i].permute(1, 2, 0).detach().cpu().numpy()
- _img = (_img + 0.5) * 255
- _img = _img[:, :, ::-1]
- file_name = f"{indices[beg_img_no + i]}"
- file_name = file_name + "_ori" if is_ori else file_name
- cv2.imwrite(file_name + ".jpg", _img)
- if self.is_onnx:
- input_dict = {}
- input_dict[self.predictor.get_inputs()[0].name] = (
- norm_img_batch.detach().cpu().numpy()
- )
- outputs = self.predictor.run(None, input_dict)
- preds = {}
- preds["ctc"] = torch.from_numpy(outputs[0])
- preds["ctc_neck"] = [torch.zeros(1)] * img_num
- else:
- preds = self.predictor(norm_img_batch)
- for rno in range(preds["ctc"].shape[0]):
- preds_all[indices[beg_img_no + rno]] = preds["ctc"][rno]
- preds_neck_all[indices[beg_img_no + rno]] = preds["ctc_neck"][rno]
- return torch.stack(preds_all, dim=0), torch.stack(preds_neck_all, dim=0)
- def get_char_dict(self, character_dict_path):
- character_str = []
- with open(character_dict_path, "rb") as fin:
- lines = fin.readlines()
- for line in lines:
- line = line.decode("utf-8").strip("\n").strip("\r\n")
- character_str.append(line)
- dict_character = list(character_str)
- dict_character = ["sos"] + dict_character + [" "] # eos is space
- return dict_character
- def get_text(self, order):
- char_list = [self.chars[text_id] for text_id in order]
- return "".join(char_list)
- def decode(self, mat):
- text_index = mat.detach().cpu().numpy().argmax(axis=1)
- ignored_tokens = [0]
- selection = np.ones(len(text_index), dtype=bool)
- selection[1:] = text_index[1:] != text_index[:-1]
- for ignored_token in ignored_tokens:
- selection &= text_index != ignored_token
- return text_index[selection], np.where(selection)[0]
- def get_ctcloss(self, preds, gt_text, weight):
- if not isinstance(weight, torch.Tensor):
- weight = torch.tensor(weight).to(preds.device)
- ctc_loss = torch.nn.CTCLoss(reduction="none")
- log_probs = preds.log_softmax(dim=2).permute(1, 0, 2) # NTC-->TNC
- targets = []
- target_lengths = []
- for t in gt_text:
- targets += [self.char2id.get(i, len(self.chars) - 1) for i in t]
- target_lengths += [len(t)]
- targets = torch.tensor(targets).to(preds.device)
- target_lengths = torch.tensor(target_lengths).to(preds.device)
- input_lengths = torch.tensor([log_probs.shape[0]] * (log_probs.shape[1])).to(
- preds.device
- )
- loss = ctc_loss(log_probs, targets, input_lengths, target_lengths)
- loss = loss / input_lengths * weight
- return loss
- def main():
- rec_model_dir = "./ocr_weights/ppv3_rec.pth"
- predictor = create_predictor(rec_model_dir)
- args = edict()
- args.rec_image_shape = "3, 48, 320"
- args.rec_char_dict_path = "./ocr_weights/ppocr_keys_v1.txt"
- args.rec_batch_num = 6
- text_recognizer = TextRecognizer(args, predictor)
- image_dir = "./test_imgs_cn"
- gt_text = ["韩国小馆"] * 14
- image_file_list = get_image_file_list(image_dir)
- valid_image_file_list = []
- img_list = []
- for image_file in image_file_list:
- img = cv2.imread(image_file)
- if img is None:
- print("error in loading image:{}".format(image_file))
- continue
- valid_image_file_list.append(image_file)
- img_list.append(torch.from_numpy(img).permute(2, 0, 1).float())
- try:
- tic = time.time()
- times = []
- for i in range(10):
- preds, _ = text_recognizer.pred_imglist(img_list) # get text
- preds_all = preds.softmax(dim=2)
- times += [(time.time() - tic) * 1000.0]
- tic = time.time()
- print(times)
- print(np.mean(times[1:]) / len(preds_all))
- weight = np.ones(len(gt_text))
- loss = text_recognizer.get_ctcloss(preds, gt_text, weight)
- for i in range(len(valid_image_file_list)):
- pred = preds_all[i]
- order, idx = text_recognizer.decode(pred)
- text = text_recognizer.get_text(order)
- print(
- f'{valid_image_file_list[i]}: pred/gt="{text}"/"{gt_text[i]}", loss={loss[i]:.2f}'
- )
- except Exception as E:
- print(traceback.format_exc(), E)
- if __name__ == "__main__":
- main()
|