| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401 |
- """
- AnyText: Multilingual Visual Text Generation And Editing
- Paper: https://arxiv.org/abs/2311.03054
- Code: https://github.com/tyxsspa/AnyText
- Copyright (c) Alibaba, Inc. and its affiliates.
- """
- import os
- from pathlib import Path
- from safetensors.torch import load_file
- from sorawm.iopaint.model.utils import set_seed
- os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
- import re
- import cv2
- import einops
- import numpy as np
- import torch
- from PIL import ImageFont
- from sorawm.iopaint.model.anytext.cldm.ddim_hacked import DDIMSampler
- from sorawm.iopaint.model.anytext.cldm.model import create_model, load_state_dict
- from sorawm.iopaint.model.anytext.utils import check_channels, draw_glyph, draw_glyph2
- BBOX_MAX_NUM = 8
- PLACE_HOLDER = "*"
- max_chars = 20
- ANYTEXT_CFG = os.path.join(
- os.path.dirname(os.path.abspath(__file__)), "anytext_sd15.yaml"
- )
- def check_limits(tensor):
- float16_min = torch.finfo(torch.float16).min
- float16_max = torch.finfo(torch.float16).max
- # 检查张量中是否有值小于float16的最小值或大于float16的最大值
- is_below_min = (tensor < float16_min).any()
- is_above_max = (tensor > float16_max).any()
- return is_below_min or is_above_max
- class AnyTextPipeline:
- def __init__(self, ckpt_path, font_path, device, use_fp16=True):
- self.cfg_path = ANYTEXT_CFG
- self.font_path = font_path
- self.use_fp16 = use_fp16
- self.device = device
- self.font = ImageFont.truetype(font_path, size=60)
- self.model = create_model(
- self.cfg_path,
- device=self.device,
- use_fp16=self.use_fp16,
- )
- if self.use_fp16:
- self.model = self.model.half()
- if Path(ckpt_path).suffix == ".safetensors":
- state_dict = load_file(ckpt_path, device="cpu")
- else:
- state_dict = load_state_dict(ckpt_path, location="cpu")
- self.model.load_state_dict(state_dict, strict=False)
- self.model = self.model.eval().to(self.device)
- self.ddim_sampler = DDIMSampler(self.model, device=self.device)
- def __call__(
- self,
- prompt: str,
- negative_prompt: str,
- image: np.ndarray,
- masked_image: np.ndarray,
- num_inference_steps: int,
- strength: float,
- guidance_scale: float,
- height: int,
- width: int,
- seed: int,
- sort_priority: str = "y",
- callback=None,
- ):
- """
- Args:
- prompt:
- negative_prompt:
- image:
- masked_image:
- num_inference_steps:
- strength:
- guidance_scale:
- height:
- width:
- seed:
- sort_priority: x: left-right, y: top-down
- Returns:
- result: list of images in numpy.ndarray format
- rst_code: 0: normal -1: error 1:warning
- rst_info: string of error or warning
- """
- set_seed(seed)
- str_warning = ""
- mode = "text-editing"
- revise_pos = False
- img_count = 1
- ddim_steps = num_inference_steps
- w = width
- h = height
- strength = strength
- cfg_scale = guidance_scale
- eta = 0.0
- prompt, texts = self.modify_prompt(prompt)
- if prompt is None and texts is None:
- return (
- None,
- -1,
- "You have input Chinese prompt but the translator is not loaded!",
- "",
- )
- n_lines = len(texts)
- if mode in ["text-generation", "gen"]:
- edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image
- elif mode in ["text-editing", "edit"]:
- if masked_image is None or image is None:
- return (
- None,
- -1,
- "Reference image and position image are needed for text editing!",
- "",
- )
- if isinstance(image, str):
- image = cv2.imread(image)[..., ::-1]
- assert image is not None, f"Can't read ori_image image from{image}!"
- elif isinstance(image, torch.Tensor):
- image = image.cpu().numpy()
- else:
- assert isinstance(
- image, np.ndarray
- ), f"Unknown format of ori_image: {type(image)}"
- edit_image = image.clip(1, 255) # for mask reason
- edit_image = check_channels(edit_image)
- # edit_image = resize_image(
- # edit_image, max_length=768
- # ) # make w h multiple of 64, resize if w or h > max_length
- h, w = edit_image.shape[:2] # change h, w by input ref_img
- # preprocess pos_imgs(if numpy, make sure it's white pos in black bg)
- if masked_image is None:
- pos_imgs = np.zeros((w, h, 1))
- if isinstance(masked_image, str):
- masked_image = cv2.imread(masked_image)[..., ::-1]
- assert (
- masked_image is not None
- ), f"Can't read draw_pos image from{masked_image}!"
- pos_imgs = 255 - masked_image
- elif isinstance(masked_image, torch.Tensor):
- pos_imgs = masked_image.cpu().numpy()
- else:
- assert isinstance(
- masked_image, np.ndarray
- ), f"Unknown format of draw_pos: {type(masked_image)}"
- pos_imgs = 255 - masked_image
- pos_imgs = pos_imgs[..., 0:1]
- pos_imgs = cv2.convertScaleAbs(pos_imgs)
- _, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY)
- # seprate pos_imgs
- pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority)
- if len(pos_imgs) == 0:
- pos_imgs = [np.zeros((h, w, 1))]
- if len(pos_imgs) < n_lines:
- if n_lines == 1 and texts[0] == " ":
- pass # text-to-image without text
- else:
- raise RuntimeError(
- f"{n_lines} text line to draw from prompt, not enough mask area({len(pos_imgs)}) on images"
- )
- elif len(pos_imgs) > n_lines:
- str_warning = f"Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt."
- # get pre_pos, poly_list, hint that needed for anytext
- pre_pos = []
- poly_list = []
- for input_pos in pos_imgs:
- if input_pos.mean() != 0:
- input_pos = (
- input_pos[..., np.newaxis]
- if len(input_pos.shape) == 2
- else input_pos
- )
- poly, pos_img = self.find_polygon(input_pos)
- pre_pos += [pos_img / 255.0]
- poly_list += [poly]
- else:
- pre_pos += [np.zeros((h, w, 1))]
- poly_list += [None]
- np_hint = np.sum(pre_pos, axis=0).clip(0, 1)
- # prepare info dict
- info = {}
- info["glyphs"] = []
- info["gly_line"] = []
- info["positions"] = []
- info["n_lines"] = [len(texts)] * img_count
- gly_pos_imgs = []
- for i in range(len(texts)):
- text = texts[i]
- if len(text) > max_chars:
- str_warning = (
- f'"{text}" length > max_chars: {max_chars}, will be cut off...'
- )
- text = text[:max_chars]
- gly_scale = 2
- if pre_pos[i].mean() != 0:
- gly_line = draw_glyph(self.font, text)
- glyphs = draw_glyph2(
- self.font,
- text,
- poly_list[i],
- scale=gly_scale,
- width=w,
- height=h,
- add_space=False,
- )
- gly_pos_img = cv2.drawContours(
- glyphs * 255, [poly_list[i] * gly_scale], 0, (255, 255, 255), 1
- )
- if revise_pos:
- resize_gly = cv2.resize(
- glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0])
- )
- new_pos = cv2.morphologyEx(
- (resize_gly * 255).astype(np.uint8),
- cv2.MORPH_CLOSE,
- kernel=np.ones(
- (resize_gly.shape[0] // 10, resize_gly.shape[1] // 10),
- dtype=np.uint8,
- ),
- iterations=1,
- )
- new_pos = (
- new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos
- )
- contours, _ = cv2.findContours(
- new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
- )
- if len(contours) != 1:
- str_warning = f"Fail to revise position {i} to bounding rect, remain position unchanged..."
- else:
- rect = cv2.minAreaRect(contours[0])
- poly = np.int0(cv2.boxPoints(rect))
- pre_pos[i] = (
- cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255.0
- )
- gly_pos_img = cv2.drawContours(
- glyphs * 255, [poly * gly_scale], 0, (255, 255, 255), 1
- )
- gly_pos_imgs += [gly_pos_img] # for show
- else:
- glyphs = np.zeros((h * gly_scale, w * gly_scale, 1))
- gly_line = np.zeros((80, 512, 1))
- gly_pos_imgs += [
- np.zeros((h * gly_scale, w * gly_scale, 1))
- ] # for show
- pos = pre_pos[i]
- info["glyphs"] += [self.arr2tensor(glyphs, img_count)]
- info["gly_line"] += [self.arr2tensor(gly_line, img_count)]
- info["positions"] += [self.arr2tensor(pos, img_count)]
- # get masked_x
- masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0) * (1 - np_hint)
- masked_img = np.transpose(masked_img, (2, 0, 1))
- masked_img = torch.from_numpy(masked_img.copy()).float().to(self.device)
- if self.use_fp16:
- masked_img = masked_img.half()
- encoder_posterior = self.model.encode_first_stage(masked_img[None, ...])
- masked_x = self.model.get_first_stage_encoding(encoder_posterior).detach()
- if self.use_fp16:
- masked_x = masked_x.half()
- info["masked_x"] = torch.cat([masked_x for _ in range(img_count)], dim=0)
- hint = self.arr2tensor(np_hint, img_count)
- cond = self.model.get_learned_conditioning(
- dict(
- c_concat=[hint],
- c_crossattn=[[prompt] * img_count],
- text_info=info,
- )
- )
- un_cond = self.model.get_learned_conditioning(
- dict(
- c_concat=[hint],
- c_crossattn=[[negative_prompt] * img_count],
- text_info=info,
- )
- )
- shape = (4, h // 8, w // 8)
- self.model.control_scales = [strength] * 13
- samples, intermediates = self.ddim_sampler.sample(
- ddim_steps,
- img_count,
- shape,
- cond,
- verbose=False,
- eta=eta,
- unconditional_guidance_scale=cfg_scale,
- unconditional_conditioning=un_cond,
- callback=callback,
- )
- if self.use_fp16:
- samples = samples.half()
- x_samples = self.model.decode_first_stage(samples)
- x_samples = (
- (einops.rearrange(x_samples, "b c h w -> b h w c") * 127.5 + 127.5)
- .cpu()
- .numpy()
- .clip(0, 255)
- .astype(np.uint8)
- )
- results = [x_samples[i] for i in range(img_count)]
- # if (
- # mode == "edit" and False
- # ): # replace backgound in text editing but not ideal yet
- # results = [r * np_hint + edit_image * (1 - np_hint) for r in results]
- # results = [r.clip(0, 255).astype(np.uint8) for r in results]
- # if len(gly_pos_imgs) > 0 and show_debug:
- # glyph_bs = np.stack(gly_pos_imgs, axis=2)
- # glyph_img = np.sum(glyph_bs, axis=2) * 255
- # glyph_img = glyph_img.clip(0, 255).astype(np.uint8)
- # results += [np.repeat(glyph_img, 3, axis=2)]
- rst_code = 1 if str_warning else 0
- return results, rst_code, str_warning
- def modify_prompt(self, prompt):
- prompt = prompt.replace("“", '"')
- prompt = prompt.replace("”", '"')
- p = '"(.*?)"'
- strs = re.findall(p, prompt)
- if len(strs) == 0:
- strs = [" "]
- else:
- for s in strs:
- prompt = prompt.replace(f'"{s}"', f" {PLACE_HOLDER} ", 1)
- # if self.is_chinese(prompt):
- # if self.trans_pipe is None:
- # return None, None
- # old_prompt = prompt
- # prompt = self.trans_pipe(input=prompt + " .")["translation"][:-1]
- # print(f"Translate: {old_prompt} --> {prompt}")
- return prompt, strs
- # def is_chinese(self, text):
- # text = checker._clean_text(text)
- # for char in text:
- # cp = ord(char)
- # if checker._is_chinese_char(cp):
- # return True
- # return False
- def separate_pos_imgs(self, img, sort_priority, gap=102):
- num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img)
- components = []
- for label in range(1, num_labels):
- component = np.zeros_like(img)
- component[labels == label] = 255
- components.append((component, centroids[label]))
- if sort_priority == "y":
- fir, sec = 1, 0 # top-down first
- elif sort_priority == "x":
- fir, sec = 0, 1 # left-right first
- components.sort(key=lambda c: (c[1][fir] // gap, c[1][sec] // gap))
- sorted_components = [c[0] for c in components]
- return sorted_components
- def find_polygon(self, image, min_rect=False):
- contours, hierarchy = cv2.findContours(
- image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
- )
- max_contour = max(contours, key=cv2.contourArea) # get contour with max area
- if min_rect:
- # get minimum enclosing rectangle
- rect = cv2.minAreaRect(max_contour)
- poly = np.int0(cv2.boxPoints(rect))
- else:
- # get approximate polygon
- epsilon = 0.01 * cv2.arcLength(max_contour, True)
- poly = cv2.approxPolyDP(max_contour, epsilon, True)
- n, _, xy = poly.shape
- poly = poly.reshape(n, xy)
- cv2.drawContours(image, [poly], -1, 255, -1)
- return poly, image
- def arr2tensor(self, arr, bs):
- arr = np.transpose(arr, (2, 0, 1))
- _arr = torch.from_numpy(arr.copy()).float().to(self.device)
- if self.use_fp16:
- _arr = _arr.half()
- _arr = torch.stack([_arr for _ in range(bs)], dim=0)
- return _arr
|