| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- import cv2
- import PIL.Image
- import torch
- from loguru import logger
- from PIL import Image
- from sorawm.iopaint.schema import InpaintRequest
- from ...const import POWERPAINT_NAME
- from ..base import DiffusionInpaintModel
- from ..helper.cpu_text_encoder import CPUTextEncoderWrapper
- from ..utils import (
- enable_low_mem,
- get_torch_dtype,
- handle_from_pretrained_exceptions,
- is_local_files_only,
- )
- from .powerpaint_tokenizer import add_task_to_prompt
- class PowerPaint(DiffusionInpaintModel):
- name = POWERPAINT_NAME
- pad_mod = 8
- min_size = 512
- lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
- def init_model(self, device: torch.device, **kwargs):
- from .pipeline_powerpaint import StableDiffusionInpaintPipeline
- from .powerpaint_tokenizer import PowerPaintTokenizer
- use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
- model_kwargs = {"local_files_only": is_local_files_only(**kwargs)}
- if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
- logger.info("Disable Stable Diffusion Model NSFW checker")
- model_kwargs.update(
- dict(
- safety_checker=None,
- feature_extractor=None,
- requires_safety_checker=False,
- )
- )
- self.model = handle_from_pretrained_exceptions(
- StableDiffusionInpaintPipeline.from_pretrained,
- pretrained_model_name_or_path=self.name,
- variant="fp16",
- torch_dtype=torch_dtype,
- **model_kwargs,
- )
- self.model.tokenizer = PowerPaintTokenizer(self.model.tokenizer)
- enable_low_mem(self.model, kwargs.get("low_mem", False))
- if kwargs.get("cpu_offload", False) and use_gpu:
- logger.info("Enable sequential cpu offload")
- self.model.enable_sequential_cpu_offload(gpu_id=0)
- else:
- self.model = self.model.to(device)
- if kwargs["sd_cpu_textencoder"]:
- logger.info("Run Stable Diffusion TextEncoder on CPU")
- self.model.text_encoder = CPUTextEncoderWrapper(
- self.model.text_encoder, torch_dtype
- )
- self.callback = kwargs.pop("callback", None)
- def forward(self, image, mask, config: InpaintRequest):
- """Input image and output image have same size
- image: [H, W, C] RGB
- mask: [H, W, 1] 255 means area to repaint
- return: BGR IMAGE
- """
- self.set_scheduler(config)
- img_h, img_w = image.shape[:2]
- promptA, promptB, negative_promptA, negative_promptB = add_task_to_prompt(
- config.prompt, config.negative_prompt, config.powerpaint_task
- )
- output = self.model(
- image=PIL.Image.fromarray(image),
- promptA=promptA,
- promptB=promptB,
- tradoff=config.fitting_degree,
- tradoff_nag=config.fitting_degree,
- negative_promptA=negative_promptA,
- negative_promptB=negative_promptB,
- mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
- num_inference_steps=config.sd_steps,
- strength=config.sd_strength,
- guidance_scale=config.sd_guidance_scale,
- output_type="np",
- callback=self.callback,
- height=img_h,
- width=img_w,
- generator=torch.manual_seed(config.sd_seed),
- callback_steps=1,
- ).images[0]
- output = (output * 255).round().astype("uint8")
- output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
- return output
|