build_sam.py 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # All rights reserved.
  3. # This source code is licensed under the license found in the
  4. # LICENSE file in the root directory of this source tree.
  5. import logging
  6. from pathlib import Path
  7. import torch
  8. from .modeling.backbones.hieradet import Hiera
  9. from .modeling.backbones.image_encoder import FpnNeck, ImageEncoder
  10. from .modeling.memory_attention import MemoryAttention, MemoryAttentionLayer
  11. from .modeling.memory_encoder import CXBlock, Fuser, MaskDownSampler, MemoryEncoder
  12. from .modeling.position_encoding import PositionEmbeddingSine
  13. from .modeling.sam2_base import SAM2Base
  14. from .modeling.sam.transformer import RoPEAttention
  15. common_kwargs = dict(
  16. num_maskmem=7,
  17. image_size=1024,
  18. sigmoid_scale_for_mem_enc=20.0,
  19. sigmoid_bias_for_mem_enc=-10.0,
  20. use_mask_input_as_output_without_sam=True,
  21. directly_add_no_mem_embed=True,
  22. use_high_res_features_in_sam=True,
  23. multimask_output_in_sam=True,
  24. iou_prediction_use_sigmoid=True,
  25. use_obj_ptrs_in_encoder=True,
  26. add_tpos_enc_to_obj_ptrs=False,
  27. only_obj_ptrs_in_the_past_for_eval=True,
  28. pred_obj_scores=True,
  29. pred_obj_scores_mlp=True,
  30. fixed_no_obj_ptr=True,
  31. multimask_output_for_tracking=True,
  32. use_multimask_token_for_obj_ptr=True,
  33. multimask_min_pt_num=0,
  34. multimask_max_pt_num=1,
  35. use_mlp_for_obj_ptr_proj=True,
  36. compile_image_encoder=False,
  37. )
  38. common_kwargs_for_2_1 = dict(
  39. num_maskmem=7,
  40. image_size=1024,
  41. sigmoid_scale_for_mem_enc=20.0,
  42. sigmoid_bias_for_mem_enc=-10.0,
  43. use_mask_input_as_output_without_sam=True,
  44. directly_add_no_mem_embed=True,
  45. no_obj_embed_spatial=True,
  46. use_high_res_features_in_sam=True,
  47. multimask_output_in_sam=True,
  48. iou_prediction_use_sigmoid=True,
  49. use_obj_ptrs_in_encoder=True,
  50. add_tpos_enc_to_obj_ptrs=True,
  51. proj_tpos_enc_in_obj_ptrs=True,
  52. use_signed_tpos_enc_to_obj_ptrs=True,
  53. only_obj_ptrs_in_the_past_for_eval=True,
  54. pred_obj_scores=True,
  55. pred_obj_scores_mlp=True,
  56. fixed_no_obj_ptr=True,
  57. multimask_output_for_tracking=True,
  58. use_multimask_token_for_obj_ptr=True,
  59. multimask_min_pt_num=0,
  60. multimask_max_pt_num=1,
  61. use_mlp_for_obj_ptr_proj=True,
  62. compile_image_encoder=False,
  63. )
  64. def build_memory_attention():
  65. return MemoryAttention(
  66. d_model=256,
  67. pos_enc_at_input=True,
  68. layer=MemoryAttentionLayer(
  69. activation="relu",
  70. dim_feedforward=2048,
  71. dropout=0.1,
  72. pos_enc_at_attn=False,
  73. self_attention=RoPEAttention(
  74. rope_theta=10000.0,
  75. feat_sizes=[32, 32],
  76. embedding_dim=256,
  77. num_heads=1,
  78. downsample_rate=1,
  79. dropout=0.1,
  80. ),
  81. d_model=256,
  82. pos_enc_at_cross_attn_keys=True,
  83. pos_enc_at_cross_attn_queries=False,
  84. cross_attention=RoPEAttention(
  85. rope_theta=10000.0,
  86. feat_sizes=[32, 32],
  87. embedding_dim=256,
  88. num_heads=1,
  89. downsample_rate=1,
  90. dropout=0.1,
  91. kv_in_dim=64,
  92. ),
  93. ),
  94. num_layers=4,
  95. )
  96. def build_memory_encoder():
  97. return MemoryEncoder(
  98. out_dim=64,
  99. position_encoding=PositionEmbeddingSine(
  100. num_pos_feats=64, normalize=True, scale=None, temperature=10000
  101. ),
  102. mask_downsampler=MaskDownSampler(
  103. kernel_size=3,
  104. stride=2,
  105. padding=1,
  106. ),
  107. fuser=Fuser(
  108. layer=CXBlock(
  109. dim=256,
  110. kernel_size=7,
  111. padding=3,
  112. layer_scale_init_value=1e-6,
  113. use_dwconv=True,
  114. ),
  115. num_layers=2,
  116. ),
  117. )
  118. def build_image_encoder_tiny():
  119. return ImageEncoder(
  120. scalp=1,
  121. trunk=Hiera(
  122. embed_dim=96,
  123. num_heads=1,
  124. stages=(1, 2, 7, 2),
  125. global_att_blocks=(5, 7, 9),
  126. window_pos_embed_bkg_spatial_size=(7, 7),
  127. window_spec=(8, 4, 14, 7),
  128. ),
  129. neck=FpnNeck(
  130. position_encoding=PositionEmbeddingSine(
  131. num_pos_feats=256,
  132. normalize=True,
  133. scale=None,
  134. temperature=10000,
  135. ),
  136. d_model=256,
  137. backbone_channel_list=[768, 384, 192, 96],
  138. fpn_top_down_levels=[2, 3],
  139. fpn_interp_model="nearest",
  140. ),
  141. )
  142. def build_image_encoder_small():
  143. return ImageEncoder(
  144. scalp=1,
  145. trunk=Hiera(
  146. embed_dim=96,
  147. num_heads=1,
  148. stages=(1, 2, 11, 2),
  149. global_att_blocks=(7, 10, 13),
  150. window_pos_embed_bkg_spatial_size=(7, 7),
  151. window_spec=(8, 4, 14, 7),
  152. ),
  153. neck=FpnNeck(
  154. position_encoding=PositionEmbeddingSine(
  155. num_pos_feats=256,
  156. normalize=True,
  157. scale=None,
  158. temperature=10000,
  159. ),
  160. d_model=256,
  161. backbone_channel_list=[768, 384, 192, 96],
  162. fpn_top_down_levels=[2, 3],
  163. fpn_interp_model="nearest",
  164. ),
  165. )
  166. def build_image_encoder_base():
  167. return ImageEncoder(
  168. scalp=1,
  169. trunk=Hiera(
  170. embed_dim=112,
  171. num_heads=2,
  172. stages=(2, 3, 16, 3),
  173. global_att_blocks=(12, 16, 20),
  174. window_pos_embed_bkg_spatial_size=(14, 14),
  175. window_spec=(8, 4, 14, 7),
  176. ),
  177. neck=FpnNeck(
  178. position_encoding=PositionEmbeddingSine(
  179. num_pos_feats=256,
  180. normalize=True,
  181. scale=None,
  182. temperature=10000,
  183. ),
  184. d_model=256,
  185. backbone_channel_list=[896, 448, 224, 112],
  186. fpn_top_down_levels=[2, 3],
  187. fpn_interp_model="nearest",
  188. ),
  189. )
  190. def build_image_encoder_large():
  191. return ImageEncoder(
  192. scalp=1,
  193. trunk=Hiera(
  194. embed_dim=144,
  195. num_heads=2,
  196. stages=(2, 6, 36, 4),
  197. global_att_blocks=(23, 33, 43),
  198. window_pos_embed_bkg_spatial_size=(7, 7),
  199. window_spec=(8, 4, 16, 8),
  200. ),
  201. neck=FpnNeck(
  202. position_encoding=PositionEmbeddingSine(
  203. num_pos_feats=256,
  204. normalize=True,
  205. scale=None,
  206. temperature=10000,
  207. ),
  208. d_model=256,
  209. backbone_channel_list=[1152, 576, 288, 144],
  210. fpn_top_down_levels=[2, 3],
  211. fpn_interp_model="nearest",
  212. ),
  213. )
  214. def build_sam2_tiny():
  215. return SAM2Base(
  216. **common_kwargs,
  217. image_encoder=build_image_encoder_tiny(),
  218. memory_attention=build_memory_attention(),
  219. memory_encoder=build_memory_encoder(),
  220. )
  221. def build_sam2_small():
  222. return SAM2Base(
  223. **common_kwargs,
  224. image_encoder=build_image_encoder_small(),
  225. memory_attention=build_memory_attention(),
  226. memory_encoder=build_memory_encoder(),
  227. )
  228. def build_sam2_base():
  229. return SAM2Base(
  230. **common_kwargs,
  231. image_encoder=build_image_encoder_base(),
  232. memory_attention=build_memory_attention(),
  233. memory_encoder=build_memory_encoder(),
  234. )
  235. def build_sam2_large():
  236. return SAM2Base(
  237. **common_kwargs,
  238. image_encoder=build_image_encoder_large(),
  239. memory_attention=build_memory_attention(),
  240. memory_encoder=build_memory_encoder(),
  241. )
  242. def build_sam2_1_tiny():
  243. return SAM2Base(
  244. **common_kwargs_for_2_1,
  245. image_encoder=build_image_encoder_tiny(),
  246. memory_attention=build_memory_attention(),
  247. memory_encoder=build_memory_encoder(),
  248. )
  249. def build_sam2_1_small():
  250. return SAM2Base(
  251. **common_kwargs_for_2_1,
  252. image_encoder=build_image_encoder_small(),
  253. memory_attention=build_memory_attention(),
  254. memory_encoder=build_memory_encoder(),
  255. )
  256. def build_sam2_1_base():
  257. return SAM2Base(
  258. **common_kwargs_for_2_1,
  259. image_encoder=build_image_encoder_base(),
  260. memory_attention=build_memory_attention(),
  261. memory_encoder=build_memory_encoder(),
  262. )
  263. def build_sam2_1_large():
  264. return SAM2Base(
  265. **common_kwargs_for_2_1,
  266. image_encoder=build_image_encoder_large(),
  267. memory_attention=build_memory_attention(),
  268. memory_encoder=build_memory_encoder(),
  269. )
  270. sam2_model_registry = {
  271. "sam2_tiny": build_sam2_tiny,
  272. "sam2_small": build_sam2_small,
  273. "sam2_base": build_sam2_base,
  274. "sam2_large": build_sam2_large,
  275. "sam2_1_tiny": build_sam2_1_tiny,
  276. "sam2_1_small": build_sam2_1_small,
  277. "sam2_1_base": build_sam2_1_base,
  278. "sam2_1_large": build_sam2_1_large,
  279. }
  280. def build_sam2(
  281. name,
  282. ckpt_path=None,
  283. device="cuda",
  284. mode="eval",
  285. ):
  286. model = sam2_model_registry[name]()
  287. _load_checkpoint(model, ckpt_path)
  288. model = model.to(device)
  289. if mode == "eval":
  290. model.eval()
  291. return model
  292. def _load_checkpoint(model, ckpt_path):
  293. if ckpt_path is not None:
  294. sd = torch.load(ckpt_path, map_location="cpu")["model"]
  295. missing_keys, unexpected_keys = model.load_state_dict(sd)
  296. if missing_keys:
  297. logging.error(missing_keys)
  298. raise RuntimeError()
  299. if unexpected_keys:
  300. logging.error(unexpected_keys)
  301. raise RuntimeError()
  302. logging.info("Loaded checkpoint sucessfully")