| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- import math
- import os
- import cv2
- import numpy as np
- import torch
- from torchvision.utils import make_grid
- def img2tensor(imgs, bgr2rgb=True, float32=True):
- """Numpy array to tensor.
- Args:
- imgs (list[ndarray] | ndarray): Input images.
- bgr2rgb (bool): Whether to change bgr to rgb.
- float32 (bool): Whether to change to float32.
- Returns:
- list[tensor] | tensor: Tensor images. If returned results only have
- one element, just return tensor.
- """
- def _totensor(img, bgr2rgb, float32):
- if img.shape[2] == 3 and bgr2rgb:
- if img.dtype == "float64":
- img = img.astype("float32")
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- img = torch.from_numpy(img.transpose(2, 0, 1))
- if float32:
- img = img.float()
- return img
- if isinstance(imgs, list):
- return [_totensor(img, bgr2rgb, float32) for img in imgs]
- else:
- return _totensor(imgs, bgr2rgb, float32)
- def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
- """Convert torch Tensors into image numpy arrays.
- After clamping to [min, max], values will be normalized to [0, 1].
- Args:
- tensor (Tensor or list[Tensor]): Accept shapes:
- 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
- 2) 3D Tensor of shape (3/1 x H x W);
- 3) 2D Tensor of shape (H x W).
- Tensor channel should be in RGB order.
- rgb2bgr (bool): Whether to change rgb to bgr.
- out_type (numpy type): output types. If ``np.uint8``, transform outputs
- to uint8 type with range [0, 255]; otherwise, float type with
- range [0, 1]. Default: ``np.uint8``.
- min_max (tuple[int]): min and max values for clamp.
- Returns:
- (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
- shape (H x W). The channel order is BGR.
- """
- if not (
- torch.is_tensor(tensor)
- or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))
- ):
- raise TypeError(f"tensor or list of tensors expected, got {type(tensor)}")
- if torch.is_tensor(tensor):
- tensor = [tensor]
- result = []
- for _tensor in tensor:
- _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
- _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
- n_dim = _tensor.dim()
- if n_dim == 4:
- img_np = make_grid(
- _tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False
- ).numpy()
- img_np = img_np.transpose(1, 2, 0)
- if rgb2bgr:
- img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
- elif n_dim == 3:
- img_np = _tensor.numpy()
- img_np = img_np.transpose(1, 2, 0)
- if img_np.shape[2] == 1: # gray image
- img_np = np.squeeze(img_np, axis=2)
- else:
- if rgb2bgr:
- img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
- elif n_dim == 2:
- img_np = _tensor.numpy()
- else:
- raise TypeError(
- f"Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}"
- )
- if out_type == np.uint8:
- # Unlike MATLAB, numpy.unit8() WILL NOT round by default.
- img_np = (img_np * 255.0).round()
- img_np = img_np.astype(out_type)
- result.append(img_np)
- if len(result) == 1:
- result = result[0]
- return result
- def tensor2img_fast(tensor, rgb2bgr=True, min_max=(0, 1)):
- """This implementation is slightly faster than tensor2img.
- It now only supports torch tensor with shape (1, c, h, w).
- Args:
- tensor (Tensor): Now only support torch tensor with (1, c, h, w).
- rgb2bgr (bool): Whether to change rgb to bgr. Default: True.
- min_max (tuple[int]): min and max values for clamp.
- """
- output = tensor.squeeze(0).detach().clamp_(*min_max).permute(1, 2, 0)
- output = (output - min_max[0]) / (min_max[1] - min_max[0]) * 255
- output = output.type(torch.uint8).cpu().numpy()
- if rgb2bgr:
- output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
- return output
- def imfrombytes(content, flag="color", float32=False):
- """Read an image from bytes.
- Args:
- content (bytes): Image bytes got from files or other streams.
- flag (str): Flags specifying the color type of a loaded image,
- candidates are `color`, `grayscale` and `unchanged`.
- float32 (bool): Whether to change to float32., If True, will also norm
- to [0, 1]. Default: False.
- Returns:
- ndarray: Loaded image array.
- """
- img_np = np.frombuffer(content, np.uint8)
- imread_flags = {
- "color": cv2.IMREAD_COLOR,
- "grayscale": cv2.IMREAD_GRAYSCALE,
- "unchanged": cv2.IMREAD_UNCHANGED,
- }
- img = cv2.imdecode(img_np, imread_flags[flag])
- if float32:
- img = img.astype(np.float32) / 255.0
- return img
- def imwrite(img, file_path, params=None, auto_mkdir=True):
- """Write image to file.
- Args:
- img (ndarray): Image array to be written.
- file_path (str): Image file path.
- params (None or list): Same as opencv's :func:`imwrite` interface.
- auto_mkdir (bool): If the parent folder of `file_path` does not exist,
- whether to create it automatically.
- Returns:
- bool: Successful or not.
- """
- if auto_mkdir:
- dir_name = os.path.abspath(os.path.dirname(file_path))
- os.makedirs(dir_name, exist_ok=True)
- ok = cv2.imwrite(file_path, img, params)
- if not ok:
- raise IOError("Failed in writing images.")
- def crop_border(imgs, crop_border):
- """Crop borders of images.
- Args:
- imgs (list[ndarray] | ndarray): Images with shape (h, w, c).
- crop_border (int): Crop border for each end of height and weight.
- Returns:
- list[ndarray]: Cropped images.
- """
- if crop_border == 0:
- return imgs
- else:
- if isinstance(imgs, list):
- return [
- v[crop_border:-crop_border, crop_border:-crop_border, ...] for v in imgs
- ]
- else:
- return imgs[crop_border:-crop_border, crop_border:-crop_border, ...]
|