| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- import cv2
- import PIL.Image
- import torch
- from loguru import logger
- from sorawm.iopaint.const import INSTRUCT_PIX2PIX_NAME
- from sorawm.iopaint.schema import InpaintRequest
- from .base import DiffusionInpaintModel
- from .utils import enable_low_mem, get_torch_dtype, is_local_files_only
- class InstructPix2Pix(DiffusionInpaintModel):
- name = INSTRUCT_PIX2PIX_NAME
- pad_mod = 8
- min_size = 512
- def init_model(self, device: torch.device, **kwargs):
- from diffusers import StableDiffusionInstructPix2PixPipeline
- use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
- model_kwargs = {"local_files_only": is_local_files_only(**kwargs)}
- if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
- logger.info("Disable Stable Diffusion Model NSFW checker")
- model_kwargs.update(
- dict(
- safety_checker=None,
- feature_extractor=None,
- requires_safety_checker=False,
- )
- )
- self.model = StableDiffusionInstructPix2PixPipeline.from_pretrained(
- self.name, variant="fp16", torch_dtype=torch_dtype, **model_kwargs
- )
- enable_low_mem(self.model, kwargs.get("low_mem", False))
- if kwargs.get("cpu_offload", False) and use_gpu:
- logger.info("Enable sequential cpu offload")
- self.model.enable_sequential_cpu_offload(gpu_id=0)
- else:
- self.model = self.model.to(device)
- def forward(self, image, mask, config: InpaintRequest):
- """Input image and output image have same size
- image: [H, W, C] RGB
- mask: [H, W, 1] 255 means area to repaint
- return: BGR IMAGE
- edit = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images[0]
- """
- output = self.model(
- image=PIL.Image.fromarray(image),
- prompt=config.prompt,
- negative_prompt=config.negative_prompt,
- num_inference_steps=config.sd_steps,
- image_guidance_scale=config.p2p_image_guidance_scale,
- guidance_scale=config.sd_guidance_scale,
- output_type="np",
- generator=torch.manual_seed(config.sd_seed),
- ).images[0]
- output = (output * 255).round().astype("uint8")
- output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
- return output
|