| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # All rights reserved.
- # This source code is licensed under the license found in the
- # LICENSE file in the root directory of this source tree.
- import warnings
- import numpy as np
- import torch
- from PIL import Image
- def get_sdpa_settings():
- if torch.cuda.is_available():
- old_gpu = torch.cuda.get_device_properties(0).major < 7
- # only use Flash Attention on Ampere (8.0) or newer GPUs
- use_flash_attn = torch.cuda.get_device_properties(0).major >= 8
- if not use_flash_attn:
- warnings.warn(
- "Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.",
- category=UserWarning,
- stacklevel=2,
- )
- # keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only
- # available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases)
- pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2])
- if pytorch_version < (2, 2):
- warnings.warn(
- f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. "
- "Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).",
- category=UserWarning,
- stacklevel=2,
- )
- math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn
- else:
- old_gpu = True
- use_flash_attn = False
- math_kernel_on = True
- return old_gpu, use_flash_attn, math_kernel_on
- def mask_to_box(masks: torch.Tensor):
- """
- compute bounding box given an input mask
- Inputs:
- - masks: [B, 1, H, W] boxes, dtype=torch.Tensor
- Returns:
- - box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
- """
- B, _, h, w = masks.shape
- device = masks.device
- xs = torch.arange(w, device=device, dtype=torch.int32)
- ys = torch.arange(h, device=device, dtype=torch.int32)
- grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
- grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
- grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
- min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
- max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
- min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
- max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
- bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
- return bbox_coords
- def _load_img_as_tensor(img_path, image_size):
- img_pil = Image.open(img_path)
- img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
- if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images
- img_np = img_np / 255.0
- else:
- raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
- img = torch.from_numpy(img_np).permute(2, 0, 1)
- video_width, video_height = img_pil.size # the original video size
- return img, video_height, video_width
- def concat_points(old_point_inputs, new_points, new_labels):
- """Add new points and labels to previous point inputs (add at the end)."""
- if old_point_inputs is None:
- points, labels = new_points, new_labels
- else:
- points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
- labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
- return {"point_coords": points, "point_labels": labels}
|