| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # All rights reserved.
- # This source code is licensed under the license found in the
- # LICENSE file in the root directory of this source tree.
- import copy
- from typing import Tuple
- import numpy as np
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from ..utils.misc import mask_to_box
- def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
- """
- Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
- that are temporally closest to the current frame at `frame_idx`. Here, we take
- - a) the closest conditioning frame before `frame_idx` (if any);
- - b) the closest conditioning frame after `frame_idx` (if any);
- - c) any other temporally closest conditioning frames until reaching a total
- of `max_cond_frame_num` conditioning frames.
- Outputs:
- - selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
- - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
- """
- if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
- selected_outputs = cond_frame_outputs
- unselected_outputs = {}
- else:
- assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
- selected_outputs = {}
- # the closest conditioning frame before `frame_idx` (if any)
- idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
- if idx_before is not None:
- selected_outputs[idx_before] = cond_frame_outputs[idx_before]
- # the closest conditioning frame after `frame_idx` (if any)
- idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
- if idx_after is not None:
- selected_outputs[idx_after] = cond_frame_outputs[idx_after]
- # add other temporally closest conditioning frames until reaching a total
- # of `max_cond_frame_num` conditioning frames.
- num_remain = max_cond_frame_num - len(selected_outputs)
- inds_remain = sorted(
- (t for t in cond_frame_outputs if t not in selected_outputs),
- key=lambda x: abs(x - frame_idx),
- )[:num_remain]
- selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
- unselected_outputs = {
- t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
- }
- return selected_outputs, unselected_outputs
- def get_1d_sine_pe(pos_inds, dim, temperature=10000):
- """
- Get 1D sine positional embedding as in the original Transformer paper.
- """
- pe_dim = dim // 2
- dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
- dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
- pos_embed = pos_inds.unsqueeze(-1) / dim_t
- pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
- return pos_embed
- def get_activation_fn(activation):
- """Return an activation function given a string"""
- if activation == "relu":
- return F.relu
- if activation == "gelu":
- return F.gelu
- if activation == "glu":
- return F.glu
- raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
- def get_clones(module, N):
- return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
- class DropPath(nn.Module):
- # adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
- def __init__(self, drop_prob=0.0, scale_by_keep=True):
- super(DropPath, self).__init__()
- self.drop_prob = drop_prob
- self.scale_by_keep = scale_by_keep
- def forward(self, x):
- if self.drop_prob == 0.0 or not self.training:
- return x
- keep_prob = 1 - self.drop_prob
- shape = (x.shape[0],) + (1,) * (x.ndim - 1)
- random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
- if keep_prob > 0.0 and self.scale_by_keep:
- random_tensor.div_(keep_prob)
- return x * random_tensor
- # Lightly adapted from
- # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
- class MLP(nn.Module):
- def __init__(
- self,
- input_dim: int,
- hidden_dim: int,
- output_dim: int,
- num_layers: int,
- activation: nn.Module = nn.ReLU,
- sigmoid_output: bool = False,
- ) -> None:
- super().__init__()
- self.num_layers = num_layers
- h = [hidden_dim] * (num_layers - 1)
- self.layers = nn.ModuleList(
- nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
- )
- self.sigmoid_output = sigmoid_output
- self.act = activation()
- def forward(self, x):
- for i, layer in enumerate(self.layers):
- x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
- if self.sigmoid_output:
- x = F.sigmoid(x)
- return x
- # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
- # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
- class LayerNorm2d(nn.Module):
- def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
- super().__init__()
- self.weight = nn.Parameter(torch.ones(num_channels))
- self.bias = nn.Parameter(torch.zeros(num_channels))
- self.eps = eps
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- u = x.mean(1, keepdim=True)
- s = (x - u).pow(2).mean(1, keepdim=True)
- x = (x - u) / torch.sqrt(s + self.eps)
- x = self.weight[:, None, None] * x + self.bias[:, None, None]
- return x
- def sample_box_points(
- masks: torch.Tensor,
- noise: float = 0.1, # SAM default
- noise_bound: int = 20, # SAM default
- top_left_label: int = 2,
- bottom_right_label: int = 3,
- ) -> Tuple[np.array, np.array]:
- """
- Sample a noised version of the top left and bottom right corners of a given `bbox`
- Inputs:
- - masks: [B, 1, H,W] boxes, dtype=torch.Tensor
- - noise: noise as a fraction of box width and height, dtype=float
- - noise_bound: maximum amount of noise (in pure pixesl), dtype=int
- Returns:
- - box_coords: [B, num_pt, 2], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.float
- - box_labels: [B, num_pt], label 2 is reserverd for top left and 3 for bottom right corners, dtype=torch.int32
- """
- device = masks.device
- box_coords = mask_to_box(masks)
- B, _, H, W = masks.shape
- box_labels = torch.tensor(
- [top_left_label, bottom_right_label], dtype=torch.int, device=device
- ).repeat(B)
- if noise > 0.0:
- if not isinstance(noise_bound, torch.Tensor):
- noise_bound = torch.tensor(noise_bound, device=device)
- bbox_w = box_coords[..., 2] - box_coords[..., 0]
- bbox_h = box_coords[..., 3] - box_coords[..., 1]
- max_dx = torch.min(bbox_w * noise, noise_bound)
- max_dy = torch.min(bbox_h * noise, noise_bound)
- box_noise = 2 * torch.rand(B, 1, 4, device=device) - 1
- box_noise = box_noise * torch.stack((max_dx, max_dy, max_dx, max_dy), dim=-1)
- box_coords = box_coords + box_noise
- img_bounds = (
- torch.tensor([W, H, W, H], device=device) - 1
- ) # uncentered pixel coords
- box_coords.clamp_(torch.zeros_like(img_bounds), img_bounds) # In place clamping
- box_coords = box_coords.reshape(-1, 2, 2) # always 2 points
- box_labels = box_labels.reshape(-1, 2)
- return box_coords, box_labels
- def sample_random_points_from_errors(gt_masks, pred_masks, num_pt=1):
- """
- Sample `num_pt` random points (along with their labels) independently from the error regions.
- Inputs:
- - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
- - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
- - num_pt: int, number of points to sample independently for each of the B error maps
- Outputs:
- - points: [B, num_pt, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
- - labels: [B, num_pt], dtype=torch.int32, where 1 means positive clicks and 0 means
- negative clicks
- """
- if pred_masks is None: # if pred_masks is not provided, treat it as empty
- pred_masks = torch.zeros_like(gt_masks)
- assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
- assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
- assert num_pt >= 0
- B, _, H_im, W_im = gt_masks.shape
- device = gt_masks.device
- # false positive region, a new point sampled in this region should have
- # negative label to correct the FP error
- fp_masks = ~gt_masks & pred_masks
- # false negative region, a new point sampled in this region should have
- # positive label to correct the FN error
- fn_masks = gt_masks & ~pred_masks
- # whether the prediction completely match the ground-truth on each mask
- all_correct = torch.all((gt_masks == pred_masks).flatten(2), dim=2)
- all_correct = all_correct[..., None, None]
- # channel 0 is FP map, while channel 1 is FN map
- pts_noise = torch.rand(B, num_pt, H_im, W_im, 2, device=device)
- # sample a negative new click from FP region or a positive new click
- # from FN region, depend on where the maximum falls,
- # and in case the predictions are all correct (no FP or FN), we just
- # sample a negative click from the background region
- pts_noise[..., 0] *= fp_masks | (all_correct & ~gt_masks)
- pts_noise[..., 1] *= fn_masks
- pts_idx = pts_noise.flatten(2).argmax(dim=2)
- labels = (pts_idx % 2).to(torch.int32)
- pts_idx = pts_idx // 2
- pts_x = pts_idx % W_im
- pts_y = pts_idx // W_im
- points = torch.stack([pts_x, pts_y], dim=2).to(torch.float)
- return points, labels
- def sample_one_point_from_error_center(gt_masks, pred_masks, padding=True):
- """
- Sample 1 random point (along with its label) from the center of each error region,
- that is, the point with the largest distance to the boundary of each error region.
- This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py
- Inputs:
- - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
- - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
- - padding: if True, pad with boundary of 1 px for distance transform
- Outputs:
- - points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
- - labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks
- """
- import cv2
- if pred_masks is None:
- pred_masks = torch.zeros_like(gt_masks)
- assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
- assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
- B, _, _, W_im = gt_masks.shape
- device = gt_masks.device
- # false positive region, a new point sampled in this region should have
- # negative label to correct the FP error
- fp_masks = ~gt_masks & pred_masks
- # false negative region, a new point sampled in this region should have
- # positive label to correct the FN error
- fn_masks = gt_masks & ~pred_masks
- fp_masks = fp_masks.cpu().numpy()
- fn_masks = fn_masks.cpu().numpy()
- points = torch.zeros(B, 1, 2, dtype=torch.float)
- labels = torch.ones(B, 1, dtype=torch.int32)
- for b in range(B):
- fn_mask = fn_masks[b, 0]
- fp_mask = fp_masks[b, 0]
- if padding:
- fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), "constant")
- fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), "constant")
- # compute the distance of each point in FN/FP region to its boundary
- fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0)
- fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0)
- if padding:
- fn_mask_dt = fn_mask_dt[1:-1, 1:-1]
- fp_mask_dt = fp_mask_dt[1:-1, 1:-1]
- # take the point in FN/FP region with the largest distance to its boundary
- fn_mask_dt_flat = fn_mask_dt.reshape(-1)
- fp_mask_dt_flat = fp_mask_dt.reshape(-1)
- fn_argmax = np.argmax(fn_mask_dt_flat)
- fp_argmax = np.argmax(fp_mask_dt_flat)
- is_positive = fn_mask_dt_flat[fn_argmax] > fp_mask_dt_flat[fp_argmax]
- pt_idx = fn_argmax if is_positive else fp_argmax
- points[b, 0, 0] = pt_idx % W_im # x
- points[b, 0, 1] = pt_idx // W_im # y
- labels[b, 0] = int(is_positive)
- points = points.to(device)
- labels = labels.to(device)
- return points, labels
- def get_next_point(gt_masks, pred_masks, method):
- if method == "uniform":
- return sample_random_points_from_errors(gt_masks, pred_masks)
- elif method == "center":
- return sample_one_point_from_error_center(gt_masks, pred_masks)
- else:
- raise ValueError(f"unknown sampling method {method}")
|