| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # All rights reserved.
- # This source code is licensed under the license found in the
- # LICENSE file in the root directory of this source tree.
- import logging
- from pathlib import Path
- import torch
- from .modeling.backbones.hieradet import Hiera
- from .modeling.backbones.image_encoder import FpnNeck, ImageEncoder
- from .modeling.memory_attention import MemoryAttention, MemoryAttentionLayer
- from .modeling.memory_encoder import CXBlock, Fuser, MaskDownSampler, MemoryEncoder
- from .modeling.position_encoding import PositionEmbeddingSine
- from .modeling.sam2_base import SAM2Base
- from .modeling.sam.transformer import RoPEAttention
- common_kwargs = dict(
- num_maskmem=7,
- image_size=1024,
- sigmoid_scale_for_mem_enc=20.0,
- sigmoid_bias_for_mem_enc=-10.0,
- use_mask_input_as_output_without_sam=True,
- directly_add_no_mem_embed=True,
- use_high_res_features_in_sam=True,
- multimask_output_in_sam=True,
- iou_prediction_use_sigmoid=True,
- use_obj_ptrs_in_encoder=True,
- add_tpos_enc_to_obj_ptrs=False,
- only_obj_ptrs_in_the_past_for_eval=True,
- pred_obj_scores=True,
- pred_obj_scores_mlp=True,
- fixed_no_obj_ptr=True,
- multimask_output_for_tracking=True,
- use_multimask_token_for_obj_ptr=True,
- multimask_min_pt_num=0,
- multimask_max_pt_num=1,
- use_mlp_for_obj_ptr_proj=True,
- compile_image_encoder=False,
- )
- common_kwargs_for_2_1 = dict(
- num_maskmem=7,
- image_size=1024,
- sigmoid_scale_for_mem_enc=20.0,
- sigmoid_bias_for_mem_enc=-10.0,
- use_mask_input_as_output_without_sam=True,
- directly_add_no_mem_embed=True,
- no_obj_embed_spatial=True,
- use_high_res_features_in_sam=True,
- multimask_output_in_sam=True,
- iou_prediction_use_sigmoid=True,
- use_obj_ptrs_in_encoder=True,
- add_tpos_enc_to_obj_ptrs=True,
- proj_tpos_enc_in_obj_ptrs=True,
- use_signed_tpos_enc_to_obj_ptrs=True,
- only_obj_ptrs_in_the_past_for_eval=True,
- pred_obj_scores=True,
- pred_obj_scores_mlp=True,
- fixed_no_obj_ptr=True,
- multimask_output_for_tracking=True,
- use_multimask_token_for_obj_ptr=True,
- multimask_min_pt_num=0,
- multimask_max_pt_num=1,
- use_mlp_for_obj_ptr_proj=True,
- compile_image_encoder=False,
- )
- def build_memory_attention():
- return MemoryAttention(
- d_model=256,
- pos_enc_at_input=True,
- layer=MemoryAttentionLayer(
- activation="relu",
- dim_feedforward=2048,
- dropout=0.1,
- pos_enc_at_attn=False,
- self_attention=RoPEAttention(
- rope_theta=10000.0,
- feat_sizes=[32, 32],
- embedding_dim=256,
- num_heads=1,
- downsample_rate=1,
- dropout=0.1,
- ),
- d_model=256,
- pos_enc_at_cross_attn_keys=True,
- pos_enc_at_cross_attn_queries=False,
- cross_attention=RoPEAttention(
- rope_theta=10000.0,
- feat_sizes=[32, 32],
- embedding_dim=256,
- num_heads=1,
- downsample_rate=1,
- dropout=0.1,
- kv_in_dim=64,
- ),
- ),
- num_layers=4,
- )
- def build_memory_encoder():
- return MemoryEncoder(
- out_dim=64,
- position_encoding=PositionEmbeddingSine(
- num_pos_feats=64, normalize=True, scale=None, temperature=10000
- ),
- mask_downsampler=MaskDownSampler(
- kernel_size=3,
- stride=2,
- padding=1,
- ),
- fuser=Fuser(
- layer=CXBlock(
- dim=256,
- kernel_size=7,
- padding=3,
- layer_scale_init_value=1e-6,
- use_dwconv=True,
- ),
- num_layers=2,
- ),
- )
- def build_image_encoder_tiny():
- return ImageEncoder(
- scalp=1,
- trunk=Hiera(
- embed_dim=96,
- num_heads=1,
- stages=(1, 2, 7, 2),
- global_att_blocks=(5, 7, 9),
- window_pos_embed_bkg_spatial_size=(7, 7),
- window_spec=(8, 4, 14, 7),
- ),
- neck=FpnNeck(
- position_encoding=PositionEmbeddingSine(
- num_pos_feats=256,
- normalize=True,
- scale=None,
- temperature=10000,
- ),
- d_model=256,
- backbone_channel_list=[768, 384, 192, 96],
- fpn_top_down_levels=[2, 3],
- fpn_interp_model="nearest",
- ),
- )
- def build_image_encoder_small():
- return ImageEncoder(
- scalp=1,
- trunk=Hiera(
- embed_dim=96,
- num_heads=1,
- stages=(1, 2, 11, 2),
- global_att_blocks=(7, 10, 13),
- window_pos_embed_bkg_spatial_size=(7, 7),
- window_spec=(8, 4, 14, 7),
- ),
- neck=FpnNeck(
- position_encoding=PositionEmbeddingSine(
- num_pos_feats=256,
- normalize=True,
- scale=None,
- temperature=10000,
- ),
- d_model=256,
- backbone_channel_list=[768, 384, 192, 96],
- fpn_top_down_levels=[2, 3],
- fpn_interp_model="nearest",
- ),
- )
- def build_image_encoder_base():
- return ImageEncoder(
- scalp=1,
- trunk=Hiera(
- embed_dim=112,
- num_heads=2,
- stages=(2, 3, 16, 3),
- global_att_blocks=(12, 16, 20),
- window_pos_embed_bkg_spatial_size=(14, 14),
- window_spec=(8, 4, 14, 7),
- ),
- neck=FpnNeck(
- position_encoding=PositionEmbeddingSine(
- num_pos_feats=256,
- normalize=True,
- scale=None,
- temperature=10000,
- ),
- d_model=256,
- backbone_channel_list=[896, 448, 224, 112],
- fpn_top_down_levels=[2, 3],
- fpn_interp_model="nearest",
- ),
- )
- def build_image_encoder_large():
- return ImageEncoder(
- scalp=1,
- trunk=Hiera(
- embed_dim=144,
- num_heads=2,
- stages=(2, 6, 36, 4),
- global_att_blocks=(23, 33, 43),
- window_pos_embed_bkg_spatial_size=(7, 7),
- window_spec=(8, 4, 16, 8),
- ),
- neck=FpnNeck(
- position_encoding=PositionEmbeddingSine(
- num_pos_feats=256,
- normalize=True,
- scale=None,
- temperature=10000,
- ),
- d_model=256,
- backbone_channel_list=[1152, 576, 288, 144],
- fpn_top_down_levels=[2, 3],
- fpn_interp_model="nearest",
- ),
- )
- def build_sam2_tiny():
- return SAM2Base(
- **common_kwargs,
- image_encoder=build_image_encoder_tiny(),
- memory_attention=build_memory_attention(),
- memory_encoder=build_memory_encoder(),
- )
- def build_sam2_small():
- return SAM2Base(
- **common_kwargs,
- image_encoder=build_image_encoder_small(),
- memory_attention=build_memory_attention(),
- memory_encoder=build_memory_encoder(),
- )
- def build_sam2_base():
- return SAM2Base(
- **common_kwargs,
- image_encoder=build_image_encoder_base(),
- memory_attention=build_memory_attention(),
- memory_encoder=build_memory_encoder(),
- )
- def build_sam2_large():
- return SAM2Base(
- **common_kwargs,
- image_encoder=build_image_encoder_large(),
- memory_attention=build_memory_attention(),
- memory_encoder=build_memory_encoder(),
- )
- def build_sam2_1_tiny():
- return SAM2Base(
- **common_kwargs_for_2_1,
- image_encoder=build_image_encoder_tiny(),
- memory_attention=build_memory_attention(),
- memory_encoder=build_memory_encoder(),
- )
- def build_sam2_1_small():
- return SAM2Base(
- **common_kwargs_for_2_1,
- image_encoder=build_image_encoder_small(),
- memory_attention=build_memory_attention(),
- memory_encoder=build_memory_encoder(),
- )
- def build_sam2_1_base():
- return SAM2Base(
- **common_kwargs_for_2_1,
- image_encoder=build_image_encoder_base(),
- memory_attention=build_memory_attention(),
- memory_encoder=build_memory_encoder(),
- )
- def build_sam2_1_large():
- return SAM2Base(
- **common_kwargs_for_2_1,
- image_encoder=build_image_encoder_large(),
- memory_attention=build_memory_attention(),
- memory_encoder=build_memory_encoder(),
- )
- sam2_model_registry = {
- "sam2_tiny": build_sam2_tiny,
- "sam2_small": build_sam2_small,
- "sam2_base": build_sam2_base,
- "sam2_large": build_sam2_large,
- "sam2_1_tiny": build_sam2_1_tiny,
- "sam2_1_small": build_sam2_1_small,
- "sam2_1_base": build_sam2_1_base,
- "sam2_1_large": build_sam2_1_large,
- }
- def build_sam2(
- name,
- ckpt_path=None,
- device="cuda",
- mode="eval",
- ):
- model = sam2_model_registry[name]()
- _load_checkpoint(model, ckpt_path)
- model = model.to(device)
- if mode == "eval":
- model.eval()
- return model
- def _load_checkpoint(model, ckpt_path):
- if ckpt_path is not None:
- sd = torch.load(ckpt_path, map_location="cpu")["model"]
- missing_keys, unexpected_keys = model.load_state_dict(sd)
- if missing_keys:
- logging.error(missing_keys)
- raise RuntimeError()
- if unexpected_keys:
- logging.error(unexpected_keys)
- raise RuntimeError()
- logging.info("Loaded checkpoint sucessfully")
|