| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # All rights reserved.
- # This source code is licensed under the license found in the
- # LICENSE file in the root directory of this source tree.
- from typing import List, Tuple, Type
- import torch
- from torch import nn
- from torch.nn import functional as F
- from .common import LayerNorm2d
- class MaskDecoder(nn.Module):
- def __init__(
- self,
- *,
- transformer_dim: int,
- transformer: nn.Module,
- num_multimask_outputs: int = 3,
- activation: Type[nn.Module] = nn.GELU,
- iou_head_depth: int = 3,
- iou_head_hidden_dim: int = 256,
- ) -> None:
- """
- Predicts masks given an image and prompt embeddings, using a
- tranformer architecture.
- Arguments:
- transformer_dim (int): the channel dimension of the transformer
- transformer (nn.Module): the transformer used to predict masks
- num_multimask_outputs (int): the number of masks to predict
- when disambiguating masks
- activation (nn.Module): the type of activation to use when
- upscaling masks
- iou_head_depth (int): the depth of the MLP used to predict
- mask quality
- iou_head_hidden_dim (int): the hidden dimension of the MLP
- used to predict mask quality
- """
- super().__init__()
- self.transformer_dim = transformer_dim
- self.transformer = transformer
- self.num_multimask_outputs = num_multimask_outputs
- self.iou_token = nn.Embedding(1, transformer_dim)
- self.num_mask_tokens = num_multimask_outputs + 1
- self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
- self.output_upscaling = nn.Sequential(
- nn.ConvTranspose2d(
- transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
- ),
- LayerNorm2d(transformer_dim // 4),
- activation(),
- nn.ConvTranspose2d(
- transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
- ),
- activation(),
- )
- self.output_hypernetworks_mlps = nn.ModuleList(
- [
- MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
- for i in range(self.num_mask_tokens)
- ]
- )
- self.iou_prediction_head = MLP(
- transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
- )
- def forward(
- self,
- image_embeddings: torch.Tensor,
- image_pe: torch.Tensor,
- sparse_prompt_embeddings: torch.Tensor,
- dense_prompt_embeddings: torch.Tensor,
- multimask_output: bool,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Predict masks given image and prompt embeddings.
- Arguments:
- image_embeddings (torch.Tensor): the embeddings from the image encoder
- image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
- sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
- dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
- multimask_output (bool): Whether to return multiple masks or a single
- mask.
- Returns:
- torch.Tensor: batched predicted masks
- torch.Tensor: batched predictions of mask quality
- """
- masks, iou_pred = self.predict_masks(
- image_embeddings=image_embeddings,
- image_pe=image_pe,
- sparse_prompt_embeddings=sparse_prompt_embeddings,
- dense_prompt_embeddings=dense_prompt_embeddings,
- )
- # Select the correct mask or masks for outptu
- if multimask_output:
- mask_slice = slice(1, None)
- else:
- mask_slice = slice(0, 1)
- masks = masks[:, mask_slice, :, :]
- iou_pred = iou_pred[:, mask_slice]
- # Prepare output
- return masks, iou_pred
- def predict_masks(
- self,
- image_embeddings: torch.Tensor,
- image_pe: torch.Tensor,
- sparse_prompt_embeddings: torch.Tensor,
- dense_prompt_embeddings: torch.Tensor,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """Predicts masks. See 'forward' for more details."""
- # Concatenate output tokens
- output_tokens = torch.cat(
- [self.iou_token.weight, self.mask_tokens.weight], dim=0
- )
- output_tokens = output_tokens.unsqueeze(0).expand(
- sparse_prompt_embeddings.size(0), -1, -1
- )
- tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
- # Expand per-image data in batch direction to be per-mask
- src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
- src = src + dense_prompt_embeddings
- pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
- b, c, h, w = src.shape
- # Run the transformer
- hs, src = self.transformer(src, pos_src, tokens)
- iou_token_out = hs[:, 0, :]
- mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
- # Upscale mask embeddings and predict masks using the mask tokens
- src = src.transpose(1, 2).view(b, c, h, w)
- upscaled_embedding = self.output_upscaling(src)
- hyper_in_list: List[torch.Tensor] = []
- for i in range(self.num_mask_tokens):
- hyper_in_list.append(
- self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
- )
- hyper_in = torch.stack(hyper_in_list, dim=1)
- b, c, h, w = upscaled_embedding.shape
- masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
- # Generate mask quality predictions
- iou_pred = self.iou_prediction_head(iou_token_out)
- return masks, iou_pred
- # https://github.com/SysCV/sam-hq/blob/main/segment_anything/modeling/mask_decoder_hq.py#L17
- class MaskDecoderHQ(nn.Module):
- def __init__(
- self,
- *,
- transformer_dim: int,
- transformer: nn.Module,
- num_multimask_outputs: int = 3,
- activation: Type[nn.Module] = nn.GELU,
- iou_head_depth: int = 3,
- iou_head_hidden_dim: int = 256,
- vit_dim: int = 1024,
- ) -> None:
- """
- Predicts masks given an image and prompt embeddings, using a
- transformer architecture.
- Arguments:
- transformer_dim (int): the channel dimension of the transformer
- transformer (nn.Module): the transformer used to predict masks
- num_multimask_outputs (int): the number of masks to predict
- when disambiguating masks
- activation (nn.Module): the type of activation to use when
- upscaling masks
- iou_head_depth (int): the depth of the MLP used to predict
- mask quality
- iou_head_hidden_dim (int): the hidden dimension of the MLP
- used to predict mask quality
- """
- super().__init__()
- self.transformer_dim = transformer_dim
- self.transformer = transformer
- self.num_multimask_outputs = num_multimask_outputs
- self.iou_token = nn.Embedding(1, transformer_dim)
- self.num_mask_tokens = num_multimask_outputs + 1
- self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
- self.output_upscaling = nn.Sequential(
- nn.ConvTranspose2d(
- transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
- ),
- LayerNorm2d(transformer_dim // 4),
- activation(),
- nn.ConvTranspose2d(
- transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
- ),
- activation(),
- )
- self.output_hypernetworks_mlps = nn.ModuleList(
- [
- MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
- for i in range(self.num_mask_tokens)
- ]
- )
- self.iou_prediction_head = MLP(
- transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
- )
- # HQ-SAM parameters
- self.hf_token = nn.Embedding(1, transformer_dim) # HQ-Ouptput-Token
- self.hf_mlp = MLP(
- transformer_dim, transformer_dim, transformer_dim // 8, 3
- ) # corresponding new MLP layer for HQ-Ouptput-Token
- self.num_mask_tokens = self.num_mask_tokens + 1
- # three conv fusion layers for obtaining HQ-Feature
- self.compress_vit_feat = nn.Sequential(
- nn.ConvTranspose2d(vit_dim, transformer_dim, kernel_size=2, stride=2),
- LayerNorm2d(transformer_dim),
- nn.GELU(),
- nn.ConvTranspose2d(
- transformer_dim, transformer_dim // 8, kernel_size=2, stride=2
- ),
- )
- self.embedding_encoder = nn.Sequential(
- nn.ConvTranspose2d(
- transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
- ),
- LayerNorm2d(transformer_dim // 4),
- nn.GELU(),
- nn.ConvTranspose2d(
- transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
- ),
- )
- self.embedding_maskfeature = nn.Sequential(
- nn.Conv2d(transformer_dim // 8, transformer_dim // 4, 3, 1, 1),
- LayerNorm2d(transformer_dim // 4),
- nn.GELU(),
- nn.Conv2d(transformer_dim // 4, transformer_dim // 8, 3, 1, 1),
- )
- def forward(
- self,
- image_embeddings: torch.Tensor,
- image_pe: torch.Tensor,
- sparse_prompt_embeddings: torch.Tensor,
- dense_prompt_embeddings: torch.Tensor,
- multimask_output: bool,
- hq_token_only: bool,
- interm_embeddings: torch.Tensor,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """
- Predict masks given image and prompt embeddings.
- Arguments:
- image_embeddings (torch.Tensor): the embeddings from the ViT image encoder
- image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
- sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
- dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
- multimask_output (bool): Whether to return multiple masks or a single
- mask.
- Returns:
- torch.Tensor: batched predicted masks
- torch.Tensor: batched predictions of mask quality
- """
- vit_features = interm_embeddings[0].permute(
- 0, 3, 1, 2
- ) # early-layer ViT feature, after 1st global attention block in ViT
- hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(
- vit_features
- )
- masks, iou_pred = self.predict_masks(
- image_embeddings=image_embeddings,
- image_pe=image_pe,
- sparse_prompt_embeddings=sparse_prompt_embeddings,
- dense_prompt_embeddings=dense_prompt_embeddings,
- hq_features=hq_features,
- )
- # Select the correct mask or masks for output
- if multimask_output:
- # mask with highest score
- mask_slice = slice(1, self.num_mask_tokens - 1)
- iou_pred = iou_pred[:, mask_slice]
- iou_pred, max_iou_idx = torch.max(iou_pred, dim=1)
- iou_pred = iou_pred.unsqueeze(1)
- masks_multi = masks[:, mask_slice, :, :]
- masks_sam = masks_multi[
- torch.arange(masks_multi.size(0)), max_iou_idx
- ].unsqueeze(1)
- else:
- # singale mask output, default
- mask_slice = slice(0, 1)
- iou_pred = iou_pred[:, mask_slice]
- masks_sam = masks[:, mask_slice]
- masks_hq = masks[:, slice(self.num_mask_tokens - 1, self.num_mask_tokens)]
- if hq_token_only:
- masks = masks_hq
- else:
- masks = masks_sam + masks_hq
- # Prepare output
- return masks, iou_pred
- def predict_masks(
- self,
- image_embeddings: torch.Tensor,
- image_pe: torch.Tensor,
- sparse_prompt_embeddings: torch.Tensor,
- dense_prompt_embeddings: torch.Tensor,
- hq_features: torch.Tensor,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """Predicts masks. See 'forward' for more details."""
- # Concatenate output tokens
- output_tokens = torch.cat(
- [self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight],
- dim=0,
- )
- output_tokens = output_tokens.unsqueeze(0).expand(
- sparse_prompt_embeddings.size(0), -1, -1
- )
- tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
- # Expand per-image data in batch direction to be per-mask
- src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
- src = src + dense_prompt_embeddings
- pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
- b, c, h, w = src.shape
- # Run the transformer
- hs, src = self.transformer(src, pos_src, tokens)
- iou_token_out = hs[:, 0, :]
- mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
- # Upscale mask embeddings and predict masks using the mask tokens
- src = src.transpose(1, 2).view(b, c, h, w)
- upscaled_embedding_sam = self.output_upscaling(src)
- upscaled_embedding_hq = self.embedding_maskfeature(
- upscaled_embedding_sam
- ) + hq_features.repeat(b, 1, 1, 1)
- hyper_in_list: List[torch.Tensor] = []
- for i in range(self.num_mask_tokens):
- if i < self.num_mask_tokens - 1:
- hyper_in_list.append(
- self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
- )
- else:
- hyper_in_list.append(self.hf_mlp(mask_tokens_out[:, i, :]))
- hyper_in = torch.stack(hyper_in_list, dim=1)
- b, c, h, w = upscaled_embedding_sam.shape
- masks_sam = (
- hyper_in[:, : self.num_mask_tokens - 1]
- @ upscaled_embedding_sam.view(b, c, h * w)
- ).view(b, -1, h, w)
- masks_sam_hq = (
- hyper_in[:, self.num_mask_tokens - 1 :]
- @ upscaled_embedding_hq.view(b, c, h * w)
- ).view(b, -1, h, w)
- masks = torch.cat([masks_sam, masks_sam_hq], dim=1)
- # Generate mask quality predictions
- iou_pred = self.iou_prediction_head(iou_token_out)
- return masks, iou_pred
- # Lightly adapted from
- # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
- class MLP(nn.Module):
- def __init__(
- self,
- input_dim: int,
- hidden_dim: int,
- output_dim: int,
- num_layers: int,
- sigmoid_output: bool = False,
- ) -> None:
- super().__init__()
- self.num_layers = num_layers
- h = [hidden_dim] * (num_layers - 1)
- self.layers = nn.ModuleList(
- nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
- )
- self.sigmoid_output = sigmoid_output
- def forward(self, x):
- for i, layer in enumerate(self.layers):
- x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
- if self.sigmoid_output:
- x = F.sigmoid(x)
- return x
|