power_paint.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. import cv2
  2. import PIL.Image
  3. import torch
  4. from loguru import logger
  5. from PIL import Image
  6. from sorawm.iopaint.schema import InpaintRequest
  7. from ...const import POWERPAINT_NAME
  8. from ..base import DiffusionInpaintModel
  9. from ..helper.cpu_text_encoder import CPUTextEncoderWrapper
  10. from ..utils import (
  11. enable_low_mem,
  12. get_torch_dtype,
  13. handle_from_pretrained_exceptions,
  14. is_local_files_only,
  15. )
  16. from .powerpaint_tokenizer import add_task_to_prompt
  17. class PowerPaint(DiffusionInpaintModel):
  18. name = POWERPAINT_NAME
  19. pad_mod = 8
  20. min_size = 512
  21. lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
  22. def init_model(self, device: torch.device, **kwargs):
  23. from .pipeline_powerpaint import StableDiffusionInpaintPipeline
  24. from .powerpaint_tokenizer import PowerPaintTokenizer
  25. use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
  26. model_kwargs = {"local_files_only": is_local_files_only(**kwargs)}
  27. if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
  28. logger.info("Disable Stable Diffusion Model NSFW checker")
  29. model_kwargs.update(
  30. dict(
  31. safety_checker=None,
  32. feature_extractor=None,
  33. requires_safety_checker=False,
  34. )
  35. )
  36. self.model = handle_from_pretrained_exceptions(
  37. StableDiffusionInpaintPipeline.from_pretrained,
  38. pretrained_model_name_or_path=self.name,
  39. variant="fp16",
  40. torch_dtype=torch_dtype,
  41. **model_kwargs,
  42. )
  43. self.model.tokenizer = PowerPaintTokenizer(self.model.tokenizer)
  44. enable_low_mem(self.model, kwargs.get("low_mem", False))
  45. if kwargs.get("cpu_offload", False) and use_gpu:
  46. logger.info("Enable sequential cpu offload")
  47. self.model.enable_sequential_cpu_offload(gpu_id=0)
  48. else:
  49. self.model = self.model.to(device)
  50. if kwargs["sd_cpu_textencoder"]:
  51. logger.info("Run Stable Diffusion TextEncoder on CPU")
  52. self.model.text_encoder = CPUTextEncoderWrapper(
  53. self.model.text_encoder, torch_dtype
  54. )
  55. self.callback = kwargs.pop("callback", None)
  56. def forward(self, image, mask, config: InpaintRequest):
  57. """Input image and output image have same size
  58. image: [H, W, C] RGB
  59. mask: [H, W, 1] 255 means area to repaint
  60. return: BGR IMAGE
  61. """
  62. self.set_scheduler(config)
  63. img_h, img_w = image.shape[:2]
  64. promptA, promptB, negative_promptA, negative_promptB = add_task_to_prompt(
  65. config.prompt, config.negative_prompt, config.powerpaint_task
  66. )
  67. output = self.model(
  68. image=PIL.Image.fromarray(image),
  69. promptA=promptA,
  70. promptB=promptB,
  71. tradoff=config.fitting_degree,
  72. tradoff_nag=config.fitting_degree,
  73. negative_promptA=negative_promptA,
  74. negative_promptB=negative_promptB,
  75. mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
  76. num_inference_steps=config.sd_steps,
  77. strength=config.sd_strength,
  78. guidance_scale=config.sd_guidance_scale,
  79. output_type="np",
  80. callback=self.callback,
  81. height=img_h,
  82. width=img_w,
  83. generator=torch.manual_seed(config.sd_seed),
  84. callback_steps=1,
  85. ).images[0]
  86. output = (output * 255).round().astype("uint8")
  87. output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
  88. return output