plms_sampler.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. # From: https://github.com/CompVis/latent-diffusion/blob/main/ldm/models/diffusion/plms.py
  2. import numpy as np
  3. import torch
  4. from tqdm import tqdm
  5. from .utils import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
  6. class PLMSSampler(object):
  7. def __init__(self, model, schedule="linear", **kwargs):
  8. super().__init__()
  9. self.model = model
  10. self.ddpm_num_timesteps = model.num_timesteps
  11. self.schedule = schedule
  12. def register_buffer(self, name, attr):
  13. setattr(self, name, attr)
  14. def make_schedule(
  15. self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
  16. ):
  17. if ddim_eta != 0:
  18. raise ValueError("ddim_eta must be 0 for PLMS")
  19. self.ddim_timesteps = make_ddim_timesteps(
  20. ddim_discr_method=ddim_discretize,
  21. num_ddim_timesteps=ddim_num_steps,
  22. num_ddpm_timesteps=self.ddpm_num_timesteps,
  23. verbose=verbose,
  24. )
  25. alphas_cumprod = self.model.alphas_cumprod
  26. assert (
  27. alphas_cumprod.shape[0] == self.ddpm_num_timesteps
  28. ), "alphas have to be defined for each timestep"
  29. to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
  30. self.register_buffer("betas", to_torch(self.model.betas))
  31. self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
  32. self.register_buffer(
  33. "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
  34. )
  35. # calculations for diffusion q(x_t | x_{t-1}) and others
  36. self.register_buffer(
  37. "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
  38. )
  39. self.register_buffer(
  40. "sqrt_one_minus_alphas_cumprod",
  41. to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
  42. )
  43. self.register_buffer(
  44. "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
  45. )
  46. self.register_buffer(
  47. "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
  48. )
  49. self.register_buffer(
  50. "sqrt_recipm1_alphas_cumprod",
  51. to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
  52. )
  53. # ddim sampling parameters
  54. ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
  55. alphacums=alphas_cumprod.cpu(),
  56. ddim_timesteps=self.ddim_timesteps,
  57. eta=ddim_eta,
  58. verbose=verbose,
  59. )
  60. self.register_buffer("ddim_sigmas", ddim_sigmas)
  61. self.register_buffer("ddim_alphas", ddim_alphas)
  62. self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
  63. self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
  64. sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
  65. (1 - self.alphas_cumprod_prev)
  66. / (1 - self.alphas_cumprod)
  67. * (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
  68. )
  69. self.register_buffer(
  70. "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
  71. )
  72. @torch.no_grad()
  73. def sample(
  74. self,
  75. steps,
  76. batch_size,
  77. shape,
  78. conditioning=None,
  79. callback=None,
  80. normals_sequence=None,
  81. img_callback=None,
  82. quantize_x0=False,
  83. eta=0.0,
  84. mask=None,
  85. x0=None,
  86. temperature=1.0,
  87. noise_dropout=0.0,
  88. score_corrector=None,
  89. corrector_kwargs=None,
  90. verbose=False,
  91. x_T=None,
  92. log_every_t=100,
  93. unconditional_guidance_scale=1.0,
  94. unconditional_conditioning=None,
  95. # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
  96. **kwargs,
  97. ):
  98. if conditioning is not None:
  99. if isinstance(conditioning, dict):
  100. cbs = conditioning[list(conditioning.keys())[0]].shape[0]
  101. if cbs != batch_size:
  102. print(
  103. f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
  104. )
  105. else:
  106. if conditioning.shape[0] != batch_size:
  107. print(
  108. f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
  109. )
  110. self.make_schedule(ddim_num_steps=steps, ddim_eta=eta, verbose=verbose)
  111. # sampling
  112. C, H, W = shape
  113. size = (batch_size, C, H, W)
  114. print(f"Data shape for PLMS sampling is {size}")
  115. samples = self.plms_sampling(
  116. conditioning,
  117. size,
  118. callback=callback,
  119. img_callback=img_callback,
  120. quantize_denoised=quantize_x0,
  121. mask=mask,
  122. x0=x0,
  123. ddim_use_original_steps=False,
  124. noise_dropout=noise_dropout,
  125. temperature=temperature,
  126. score_corrector=score_corrector,
  127. corrector_kwargs=corrector_kwargs,
  128. x_T=x_T,
  129. log_every_t=log_every_t,
  130. unconditional_guidance_scale=unconditional_guidance_scale,
  131. unconditional_conditioning=unconditional_conditioning,
  132. )
  133. return samples
  134. @torch.no_grad()
  135. def plms_sampling(
  136. self,
  137. cond,
  138. shape,
  139. x_T=None,
  140. ddim_use_original_steps=False,
  141. callback=None,
  142. timesteps=None,
  143. quantize_denoised=False,
  144. mask=None,
  145. x0=None,
  146. img_callback=None,
  147. log_every_t=100,
  148. temperature=1.0,
  149. noise_dropout=0.0,
  150. score_corrector=None,
  151. corrector_kwargs=None,
  152. unconditional_guidance_scale=1.0,
  153. unconditional_conditioning=None,
  154. ):
  155. device = self.model.betas.device
  156. b = shape[0]
  157. if x_T is None:
  158. img = torch.randn(shape, device=device)
  159. else:
  160. img = x_T
  161. if timesteps is None:
  162. timesteps = (
  163. self.ddpm_num_timesteps
  164. if ddim_use_original_steps
  165. else self.ddim_timesteps
  166. )
  167. elif timesteps is not None and not ddim_use_original_steps:
  168. subset_end = (
  169. int(
  170. min(timesteps / self.ddim_timesteps.shape[0], 1)
  171. * self.ddim_timesteps.shape[0]
  172. )
  173. - 1
  174. )
  175. timesteps = self.ddim_timesteps[:subset_end]
  176. time_range = (
  177. list(reversed(range(0, timesteps)))
  178. if ddim_use_original_steps
  179. else np.flip(timesteps)
  180. )
  181. total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
  182. print(f"Running PLMS Sampling with {total_steps} timesteps")
  183. iterator = tqdm(time_range, desc="PLMS Sampler", total=total_steps)
  184. old_eps = []
  185. for i, step in enumerate(iterator):
  186. index = total_steps - i - 1
  187. ts = torch.full((b,), step, device=device, dtype=torch.long)
  188. ts_next = torch.full(
  189. (b,),
  190. time_range[min(i + 1, len(time_range) - 1)],
  191. device=device,
  192. dtype=torch.long,
  193. )
  194. if mask is not None:
  195. assert x0 is not None
  196. img_orig = self.model.q_sample(
  197. x0, ts
  198. ) # TODO: deterministic forward pass?
  199. img = img_orig * mask + (1.0 - mask) * img
  200. outs = self.p_sample_plms(
  201. img,
  202. cond,
  203. ts,
  204. index=index,
  205. use_original_steps=ddim_use_original_steps,
  206. quantize_denoised=quantize_denoised,
  207. temperature=temperature,
  208. noise_dropout=noise_dropout,
  209. score_corrector=score_corrector,
  210. corrector_kwargs=corrector_kwargs,
  211. unconditional_guidance_scale=unconditional_guidance_scale,
  212. unconditional_conditioning=unconditional_conditioning,
  213. old_eps=old_eps,
  214. t_next=ts_next,
  215. )
  216. img, pred_x0, e_t = outs
  217. old_eps.append(e_t)
  218. if len(old_eps) >= 4:
  219. old_eps.pop(0)
  220. if callback:
  221. callback(i)
  222. if img_callback:
  223. img_callback(pred_x0, i)
  224. return img
  225. @torch.no_grad()
  226. def p_sample_plms(
  227. self,
  228. x,
  229. c,
  230. t,
  231. index,
  232. repeat_noise=False,
  233. use_original_steps=False,
  234. quantize_denoised=False,
  235. temperature=1.0,
  236. noise_dropout=0.0,
  237. score_corrector=None,
  238. corrector_kwargs=None,
  239. unconditional_guidance_scale=1.0,
  240. unconditional_conditioning=None,
  241. old_eps=None,
  242. t_next=None,
  243. ):
  244. b, *_, device = *x.shape, x.device
  245. def get_model_output(x, t):
  246. if (
  247. unconditional_conditioning is None
  248. or unconditional_guidance_scale == 1.0
  249. ):
  250. e_t = self.model.apply_model(x, t, c)
  251. else:
  252. x_in = torch.cat([x] * 2)
  253. t_in = torch.cat([t] * 2)
  254. c_in = torch.cat([unconditional_conditioning, c])
  255. e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
  256. e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
  257. if score_corrector is not None:
  258. assert self.model.parameterization == "eps"
  259. e_t = score_corrector.modify_score(
  260. self.model, e_t, x, t, c, **corrector_kwargs
  261. )
  262. return e_t
  263. alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
  264. alphas_prev = (
  265. self.model.alphas_cumprod_prev
  266. if use_original_steps
  267. else self.ddim_alphas_prev
  268. )
  269. sqrt_one_minus_alphas = (
  270. self.model.sqrt_one_minus_alphas_cumprod
  271. if use_original_steps
  272. else self.ddim_sqrt_one_minus_alphas
  273. )
  274. sigmas = (
  275. self.model.ddim_sigmas_for_original_num_steps
  276. if use_original_steps
  277. else self.ddim_sigmas
  278. )
  279. def get_x_prev_and_pred_x0(e_t, index):
  280. # select parameters corresponding to the currently considered timestep
  281. a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
  282. a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
  283. sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
  284. sqrt_one_minus_at = torch.full(
  285. (b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
  286. )
  287. # current prediction for x_0
  288. pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
  289. if quantize_denoised:
  290. pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
  291. # direction pointing to x_t
  292. dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
  293. noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
  294. if noise_dropout > 0.0:
  295. noise = torch.nn.functional.dropout(noise, p=noise_dropout)
  296. x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
  297. return x_prev, pred_x0
  298. e_t = get_model_output(x, t)
  299. if len(old_eps) == 0:
  300. # Pseudo Improved Euler (2nd order)
  301. x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
  302. e_t_next = get_model_output(x_prev, t_next)
  303. e_t_prime = (e_t + e_t_next) / 2
  304. elif len(old_eps) == 1:
  305. # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
  306. e_t_prime = (3 * e_t - old_eps[-1]) / 2
  307. elif len(old_eps) == 2:
  308. # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
  309. e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
  310. elif len(old_eps) >= 3:
  311. # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
  312. e_t_prime = (
  313. 55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]
  314. ) / 24
  315. x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
  316. return x_prev, pred_x0, e_t