| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736 |
- import os
- import random
- import cv2
- import numpy as np
- import torch
- import torch.fft as fft
- import torch.nn.functional as F
- from torch import conv2d, nn
- from sorawm.iopaint.helper import (
- boxes_from_mask,
- download_model,
- get_cache_path_by_url,
- load_model,
- norm_img,
- resize_max_size,
- )
- from sorawm.iopaint.schema import InpaintRequest
- from .base import InpaintModel
- from .utils import (
- Conv2dLayer,
- FullyConnectedLayer,
- MinibatchStdLayer,
- _parse_padding,
- _parse_scaling,
- activation_funcs,
- bias_act,
- conv2d_resample,
- downsample2d,
- normalize_2nd_moment,
- setup_filter,
- upsample2d,
- )
- def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl="cuda"):
- assert isinstance(x, torch.Tensor)
- return _upfirdn2d_ref(
- x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain
- )
- def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
- """Slow reference implementation of `upfirdn2d()` using standard PyTorch ops."""
- # Validate arguments.
- assert isinstance(x, torch.Tensor) and x.ndim == 4
- if f is None:
- f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
- assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
- assert f.dtype == torch.float32 and not f.requires_grad
- batch_size, num_channels, in_height, in_width = x.shape
- upx, upy = _parse_scaling(up)
- downx, downy = _parse_scaling(down)
- padx0, padx1, pady0, pady1 = _parse_padding(padding)
- # Upsample by inserting zeros.
- x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1])
- x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
- x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx])
- # Pad or crop.
- x = torch.nn.functional.pad(
- x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)]
- )
- x = x[
- :,
- :,
- max(-pady0, 0) : x.shape[2] - max(-pady1, 0),
- max(-padx0, 0) : x.shape[3] - max(-padx1, 0),
- ]
- # Setup filter.
- f = f * (gain ** (f.ndim / 2))
- f = f.to(x.dtype)
- if not flip_filter:
- f = f.flip(list(range(f.ndim)))
- # Convolve with the filter.
- f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim)
- if f.ndim == 4:
- x = conv2d(input=x, weight=f, groups=num_channels)
- else:
- x = conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels)
- x = conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels)
- # Downsample by throwing away pixels.
- x = x[:, :, ::downy, ::downx]
- return x
- class EncoderEpilogue(torch.nn.Module):
- def __init__(
- self,
- in_channels, # Number of input channels.
- cmap_dim, # Dimensionality of mapped conditioning label, 0 = no label.
- z_dim, # Output Latent (Z) dimensionality.
- resolution, # Resolution of this block.
- img_channels, # Number of input color channels.
- architecture="resnet", # Architecture: 'orig', 'skip', 'resnet'.
- mbstd_group_size=4, # Group size for the minibatch standard deviation layer, None = entire minibatch.
- mbstd_num_channels=1, # Number of features for the minibatch standard deviation layer, 0 = disable.
- activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
- conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
- ):
- assert architecture in ["orig", "skip", "resnet"]
- super().__init__()
- self.in_channels = in_channels
- self.cmap_dim = cmap_dim
- self.resolution = resolution
- self.img_channels = img_channels
- self.architecture = architecture
- if architecture == "skip":
- self.fromrgb = Conv2dLayer(
- self.img_channels, in_channels, kernel_size=1, activation=activation
- )
- self.mbstd = (
- MinibatchStdLayer(
- group_size=mbstd_group_size, num_channels=mbstd_num_channels
- )
- if mbstd_num_channels > 0
- else None
- )
- self.conv = Conv2dLayer(
- in_channels + mbstd_num_channels,
- in_channels,
- kernel_size=3,
- activation=activation,
- conv_clamp=conv_clamp,
- )
- self.fc = FullyConnectedLayer(
- in_channels * (resolution**2), z_dim, activation=activation
- )
- self.dropout = torch.nn.Dropout(p=0.5)
- def forward(self, x, cmap, force_fp32=False):
- _ = force_fp32 # unused
- dtype = torch.float32
- memory_format = torch.contiguous_format
- # FromRGB.
- x = x.to(dtype=dtype, memory_format=memory_format)
- # Main layers.
- if self.mbstd is not None:
- x = self.mbstd(x)
- const_e = self.conv(x)
- x = self.fc(const_e.flatten(1))
- x = self.dropout(x)
- # Conditioning.
- if self.cmap_dim > 0:
- x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
- assert x.dtype == dtype
- return x, const_e
- class EncoderBlock(torch.nn.Module):
- def __init__(
- self,
- in_channels, # Number of input channels, 0 = first block.
- tmp_channels, # Number of intermediate channels.
- out_channels, # Number of output channels.
- resolution, # Resolution of this block.
- img_channels, # Number of input color channels.
- first_layer_idx, # Index of the first layer.
- architecture="skip", # Architecture: 'orig', 'skip', 'resnet'.
- activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
- resample_filter=[
- 1,
- 3,
- 3,
- 1,
- ], # Low-pass filter to apply when resampling activations.
- conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
- use_fp16=False, # Use FP16 for this block?
- fp16_channels_last=False, # Use channels-last memory format with FP16?
- freeze_layers=0, # Freeze-D: Number of layers to freeze.
- ):
- assert in_channels in [0, tmp_channels]
- assert architecture in ["orig", "skip", "resnet"]
- super().__init__()
- self.in_channels = in_channels
- self.resolution = resolution
- self.img_channels = img_channels + 1
- self.first_layer_idx = first_layer_idx
- self.architecture = architecture
- self.use_fp16 = use_fp16
- self.channels_last = use_fp16 and fp16_channels_last
- self.register_buffer("resample_filter", setup_filter(resample_filter))
- self.num_layers = 0
- def trainable_gen():
- while True:
- layer_idx = self.first_layer_idx + self.num_layers
- trainable = layer_idx >= freeze_layers
- self.num_layers += 1
- yield trainable
- trainable_iter = trainable_gen()
- if in_channels == 0:
- self.fromrgb = Conv2dLayer(
- self.img_channels,
- tmp_channels,
- kernel_size=1,
- activation=activation,
- trainable=next(trainable_iter),
- conv_clamp=conv_clamp,
- channels_last=self.channels_last,
- )
- self.conv0 = Conv2dLayer(
- tmp_channels,
- tmp_channels,
- kernel_size=3,
- activation=activation,
- trainable=next(trainable_iter),
- conv_clamp=conv_clamp,
- channels_last=self.channels_last,
- )
- self.conv1 = Conv2dLayer(
- tmp_channels,
- out_channels,
- kernel_size=3,
- activation=activation,
- down=2,
- trainable=next(trainable_iter),
- resample_filter=resample_filter,
- conv_clamp=conv_clamp,
- channels_last=self.channels_last,
- )
- if architecture == "resnet":
- self.skip = Conv2dLayer(
- tmp_channels,
- out_channels,
- kernel_size=1,
- bias=False,
- down=2,
- trainable=next(trainable_iter),
- resample_filter=resample_filter,
- channels_last=self.channels_last,
- )
- def forward(self, x, img, force_fp32=False):
- # dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
- dtype = torch.float32
- memory_format = (
- torch.channels_last
- if self.channels_last and not force_fp32
- else torch.contiguous_format
- )
- # Input.
- if x is not None:
- x = x.to(dtype=dtype, memory_format=memory_format)
- # FromRGB.
- if self.in_channels == 0:
- img = img.to(dtype=dtype, memory_format=memory_format)
- y = self.fromrgb(img)
- x = x + y if x is not None else y
- img = (
- downsample2d(img, self.resample_filter)
- if self.architecture == "skip"
- else None
- )
- # Main layers.
- if self.architecture == "resnet":
- y = self.skip(x, gain=np.sqrt(0.5))
- x = self.conv0(x)
- feat = x.clone()
- x = self.conv1(x, gain=np.sqrt(0.5))
- x = y.add_(x)
- else:
- x = self.conv0(x)
- feat = x.clone()
- x = self.conv1(x)
- assert x.dtype == dtype
- return x, img, feat
- class EncoderNetwork(torch.nn.Module):
- def __init__(
- self,
- c_dim, # Conditioning label (C) dimensionality.
- z_dim, # Input latent (Z) dimensionality.
- img_resolution, # Input resolution.
- img_channels, # Number of input color channels.
- architecture="orig", # Architecture: 'orig', 'skip', 'resnet'.
- channel_base=16384, # Overall multiplier for the number of channels.
- channel_max=512, # Maximum number of channels in any layer.
- num_fp16_res=0, # Use FP16 for the N highest resolutions.
- conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
- cmap_dim=None, # Dimensionality of mapped conditioning label, None = default.
- block_kwargs={}, # Arguments for DiscriminatorBlock.
- mapping_kwargs={}, # Arguments for MappingNetwork.
- epilogue_kwargs={}, # Arguments for EncoderEpilogue.
- ):
- super().__init__()
- self.c_dim = c_dim
- self.z_dim = z_dim
- self.img_resolution = img_resolution
- self.img_resolution_log2 = int(np.log2(img_resolution))
- self.img_channels = img_channels
- self.block_resolutions = [
- 2**i for i in range(self.img_resolution_log2, 2, -1)
- ]
- channels_dict = {
- res: min(channel_base // res, channel_max)
- for res in self.block_resolutions + [4]
- }
- fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
- if cmap_dim is None:
- cmap_dim = channels_dict[4]
- if c_dim == 0:
- cmap_dim = 0
- common_kwargs = dict(
- img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp
- )
- cur_layer_idx = 0
- for res in self.block_resolutions:
- in_channels = channels_dict[res] if res < img_resolution else 0
- tmp_channels = channels_dict[res]
- out_channels = channels_dict[res // 2]
- use_fp16 = res >= fp16_resolution
- use_fp16 = False
- block = EncoderBlock(
- in_channels,
- tmp_channels,
- out_channels,
- resolution=res,
- first_layer_idx=cur_layer_idx,
- use_fp16=use_fp16,
- **block_kwargs,
- **common_kwargs,
- )
- setattr(self, f"b{res}", block)
- cur_layer_idx += block.num_layers
- if c_dim > 0:
- self.mapping = MappingNetwork(
- z_dim=0,
- c_dim=c_dim,
- w_dim=cmap_dim,
- num_ws=None,
- w_avg_beta=None,
- **mapping_kwargs,
- )
- self.b4 = EncoderEpilogue(
- channels_dict[4],
- cmap_dim=cmap_dim,
- z_dim=z_dim * 2,
- resolution=4,
- **epilogue_kwargs,
- **common_kwargs,
- )
- def forward(self, img, c, **block_kwargs):
- x = None
- feats = {}
- for res in self.block_resolutions:
- block = getattr(self, f"b{res}")
- x, img, feat = block(x, img, **block_kwargs)
- feats[res] = feat
- cmap = None
- if self.c_dim > 0:
- cmap = self.mapping(None, c)
- x, const_e = self.b4(x, cmap)
- feats[4] = const_e
- B, _ = x.shape
- z = torch.zeros(
- (B, self.z_dim), requires_grad=False, dtype=x.dtype, device=x.device
- ) ## Noise for Co-Modulation
- return x, z, feats
- def fma(a, b, c): # => a * b + c
- return _FusedMultiplyAdd.apply(a, b, c)
- class _FusedMultiplyAdd(torch.autograd.Function): # a * b + c
- @staticmethod
- def forward(ctx, a, b, c): # pylint: disable=arguments-differ
- out = torch.addcmul(c, a, b)
- ctx.save_for_backward(a, b)
- ctx.c_shape = c.shape
- return out
- @staticmethod
- def backward(ctx, dout): # pylint: disable=arguments-differ
- a, b = ctx.saved_tensors
- c_shape = ctx.c_shape
- da = None
- db = None
- dc = None
- if ctx.needs_input_grad[0]:
- da = _unbroadcast(dout * b, a.shape)
- if ctx.needs_input_grad[1]:
- db = _unbroadcast(dout * a, b.shape)
- if ctx.needs_input_grad[2]:
- dc = _unbroadcast(dout, c_shape)
- return da, db, dc
- def _unbroadcast(x, shape):
- extra_dims = x.ndim - len(shape)
- assert extra_dims >= 0
- dim = [
- i
- for i in range(x.ndim)
- if x.shape[i] > 1 and (i < extra_dims or shape[i - extra_dims] == 1)
- ]
- if len(dim):
- x = x.sum(dim=dim, keepdim=True)
- if extra_dims:
- x = x.reshape(-1, *x.shape[extra_dims + 1 :])
- assert x.shape == shape
- return x
- def modulated_conv2d(
- x, # Input tensor of shape [batch_size, in_channels, in_height, in_width].
- weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width].
- styles, # Modulation coefficients of shape [batch_size, in_channels].
- noise=None, # Optional noise tensor to add to the output activations.
- up=1, # Integer upsampling factor.
- down=1, # Integer downsampling factor.
- padding=0, # Padding with respect to the upsampled image.
- resample_filter=None,
- # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter().
- demodulate=True, # Apply weight demodulation?
- flip_weight=True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d).
- fused_modconv=True, # Perform modulation, convolution, and demodulation as a single fused operation?
- ):
- batch_size = x.shape[0]
- out_channels, in_channels, kh, kw = weight.shape
- # Pre-normalize inputs to avoid FP16 overflow.
- if x.dtype == torch.float16 and demodulate:
- weight = weight * (
- 1
- / np.sqrt(in_channels * kh * kw)
- / weight.norm(float("inf"), dim=[1, 2, 3], keepdim=True)
- ) # max_Ikk
- styles = styles / styles.norm(float("inf"), dim=1, keepdim=True) # max_I
- # Calculate per-sample weights and demodulation coefficients.
- w = None
- dcoefs = None
- if demodulate or fused_modconv:
- w = weight.unsqueeze(0) # [NOIkk]
- w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk]
- if demodulate:
- dcoefs = (w.square().sum(dim=[2, 3, 4]) + 1e-8).rsqrt() # [NO]
- if demodulate and fused_modconv:
- w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk]
- # Execute by scaling the activations before and after the convolution.
- if not fused_modconv:
- x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1)
- x = conv2d_resample.conv2d_resample(
- x=x,
- w=weight.to(x.dtype),
- f=resample_filter,
- up=up,
- down=down,
- padding=padding,
- flip_weight=flip_weight,
- )
- if demodulate and noise is not None:
- x = fma(
- x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype)
- )
- elif demodulate:
- x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1)
- elif noise is not None:
- x = x.add_(noise.to(x.dtype))
- return x
- # Execute as one fused op using grouped convolution.
- batch_size = int(batch_size)
- x = x.reshape(1, -1, *x.shape[2:])
- w = w.reshape(-1, in_channels, kh, kw)
- x = conv2d_resample(
- x=x,
- w=w.to(x.dtype),
- f=resample_filter,
- up=up,
- down=down,
- padding=padding,
- groups=batch_size,
- flip_weight=flip_weight,
- )
- x = x.reshape(batch_size, -1, *x.shape[2:])
- if noise is not None:
- x = x.add_(noise)
- return x
- class SynthesisLayer(torch.nn.Module):
- def __init__(
- self,
- in_channels, # Number of input channels.
- out_channels, # Number of output channels.
- w_dim, # Intermediate latent (W) dimensionality.
- resolution, # Resolution of this layer.
- kernel_size=3, # Convolution kernel size.
- up=1, # Integer upsampling factor.
- use_noise=True, # Enable noise input?
- activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
- resample_filter=[
- 1,
- 3,
- 3,
- 1,
- ], # Low-pass filter to apply when resampling activations.
- conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
- channels_last=False, # Use channels_last format for the weights?
- ):
- super().__init__()
- self.resolution = resolution
- self.up = up
- self.use_noise = use_noise
- self.activation = activation
- self.conv_clamp = conv_clamp
- self.register_buffer("resample_filter", setup_filter(resample_filter))
- self.padding = kernel_size // 2
- self.act_gain = activation_funcs[activation].def_gain
- self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
- memory_format = (
- torch.channels_last if channels_last else torch.contiguous_format
- )
- self.weight = torch.nn.Parameter(
- torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(
- memory_format=memory_format
- )
- )
- if use_noise:
- self.register_buffer("noise_const", torch.randn([resolution, resolution]))
- self.noise_strength = torch.nn.Parameter(torch.zeros([]))
- self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
- def forward(self, x, w, noise_mode="none", fused_modconv=True, gain=1):
- assert noise_mode in ["random", "const", "none"]
- in_resolution = self.resolution // self.up
- styles = self.affine(w)
- noise = None
- if self.use_noise and noise_mode == "random":
- noise = (
- torch.randn(
- [x.shape[0], 1, self.resolution, self.resolution], device=x.device
- )
- * self.noise_strength
- )
- if self.use_noise and noise_mode == "const":
- noise = self.noise_const * self.noise_strength
- flip_weight = self.up == 1 # slightly faster
- x = modulated_conv2d(
- x=x,
- weight=self.weight,
- styles=styles,
- noise=noise,
- up=self.up,
- padding=self.padding,
- resample_filter=self.resample_filter,
- flip_weight=flip_weight,
- fused_modconv=fused_modconv,
- )
- act_gain = self.act_gain * gain
- act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
- x = F.leaky_relu(x, negative_slope=0.2, inplace=False)
- if act_gain != 1:
- x = x * act_gain
- if act_clamp is not None:
- x = x.clamp(-act_clamp, act_clamp)
- return x
- class ToRGBLayer(torch.nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- w_dim,
- kernel_size=1,
- conv_clamp=None,
- channels_last=False,
- ):
- super().__init__()
- self.conv_clamp = conv_clamp
- self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
- memory_format = (
- torch.channels_last if channels_last else torch.contiguous_format
- )
- self.weight = torch.nn.Parameter(
- torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(
- memory_format=memory_format
- )
- )
- self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
- self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2))
- def forward(self, x, w, fused_modconv=True):
- styles = self.affine(w) * self.weight_gain
- x = modulated_conv2d(
- x=x,
- weight=self.weight,
- styles=styles,
- demodulate=False,
- fused_modconv=fused_modconv,
- )
- x = bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp)
- return x
- class SynthesisForeword(torch.nn.Module):
- def __init__(
- self,
- z_dim, # Output Latent (Z) dimensionality.
- resolution, # Resolution of this block.
- in_channels,
- img_channels, # Number of input color channels.
- architecture="skip", # Architecture: 'orig', 'skip', 'resnet'.
- activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
- ):
- super().__init__()
- self.in_channels = in_channels
- self.z_dim = z_dim
- self.resolution = resolution
- self.img_channels = img_channels
- self.architecture = architecture
- self.fc = FullyConnectedLayer(
- self.z_dim, (self.z_dim // 2) * 4 * 4, activation=activation
- )
- self.conv = SynthesisLayer(
- self.in_channels, self.in_channels, w_dim=(z_dim // 2) * 3, resolution=4
- )
- if architecture == "skip":
- self.torgb = ToRGBLayer(
- self.in_channels,
- self.img_channels,
- kernel_size=1,
- w_dim=(z_dim // 2) * 3,
- )
- def forward(self, x, ws, feats, img, force_fp32=False):
- _ = force_fp32 # unused
- dtype = torch.float32
- memory_format = torch.contiguous_format
- x_global = x.clone()
- # ToRGB.
- x = self.fc(x)
- x = x.view(-1, self.z_dim // 2, 4, 4)
- x = x.to(dtype=dtype, memory_format=memory_format)
- # Main layers.
- x_skip = feats[4].clone()
- x = x + x_skip
- mod_vector = []
- mod_vector.append(ws[:, 0])
- mod_vector.append(x_global.clone())
- mod_vector = torch.cat(mod_vector, dim=1)
- x = self.conv(x, mod_vector)
- mod_vector = []
- mod_vector.append(ws[:, 2 * 2 - 3])
- mod_vector.append(x_global.clone())
- mod_vector = torch.cat(mod_vector, dim=1)
- if self.architecture == "skip":
- img = self.torgb(x, mod_vector)
- img = img.to(dtype=torch.float32, memory_format=torch.contiguous_format)
- assert x.dtype == dtype
- return x, img
- class SELayer(nn.Module):
- def __init__(self, channel, reduction=16):
- super(SELayer, self).__init__()
- self.avg_pool = nn.AdaptiveAvgPool2d(1)
- self.fc = nn.Sequential(
- nn.Linear(channel, channel // reduction, bias=False),
- nn.ReLU(inplace=False),
- nn.Linear(channel // reduction, channel, bias=False),
- nn.Sigmoid(),
- )
- def forward(self, x):
- b, c, _, _ = x.size()
- y = self.avg_pool(x).view(b, c)
- y = self.fc(y).view(b, c, 1, 1)
- res = x * y.expand_as(x)
- return res
- class FourierUnit(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- groups=1,
- spatial_scale_factor=None,
- spatial_scale_mode="bilinear",
- spectral_pos_encoding=False,
- use_se=False,
- se_kwargs=None,
- ffc3d=False,
- fft_norm="ortho",
- ):
- # bn_layer not used
- super(FourierUnit, self).__init__()
- self.groups = groups
- self.conv_layer = torch.nn.Conv2d(
- in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
- out_channels=out_channels * 2,
- kernel_size=1,
- stride=1,
- padding=0,
- groups=self.groups,
- bias=False,
- )
- self.relu = torch.nn.ReLU(inplace=False)
- # squeeze and excitation block
- self.use_se = use_se
- if use_se:
- if se_kwargs is None:
- se_kwargs = {}
- self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)
- self.spatial_scale_factor = spatial_scale_factor
- self.spatial_scale_mode = spatial_scale_mode
- self.spectral_pos_encoding = spectral_pos_encoding
- self.ffc3d = ffc3d
- self.fft_norm = fft_norm
- def forward(self, x):
- batch = x.shape[0]
- if self.spatial_scale_factor is not None:
- orig_size = x.shape[-2:]
- x = F.interpolate(
- x,
- scale_factor=self.spatial_scale_factor,
- mode=self.spatial_scale_mode,
- align_corners=False,
- )
- r_size = x.size()
- # (batch, c, h, w/2+1, 2)
- fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
- ffted = fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
- ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
- ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
- ffted = ffted.view(
- (
- batch,
- -1,
- )
- + ffted.size()[3:]
- )
- if self.spectral_pos_encoding:
- height, width = ffted.shape[-2:]
- coords_vert = (
- torch.linspace(0, 1, height)[None, None, :, None]
- .expand(batch, 1, height, width)
- .to(ffted)
- )
- coords_hor = (
- torch.linspace(0, 1, width)[None, None, None, :]
- .expand(batch, 1, height, width)
- .to(ffted)
- )
- ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)
- if self.use_se:
- ffted = self.se(ffted)
- ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1)
- ffted = self.relu(ffted)
- ffted = (
- ffted.view(
- (
- batch,
- -1,
- 2,
- )
- + ffted.size()[2:]
- )
- .permute(0, 1, 3, 4, 2)
- .contiguous()
- ) # (batch,c, t, h, w/2+1, 2)
- ffted = torch.complex(ffted[..., 0], ffted[..., 1])
- ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
- output = torch.fft.irfftn(
- ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm
- )
- if self.spatial_scale_factor is not None:
- output = F.interpolate(
- output,
- size=orig_size,
- mode=self.spatial_scale_mode,
- align_corners=False,
- )
- return output
- class SpectralTransform(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- stride=1,
- groups=1,
- enable_lfu=True,
- **fu_kwargs,
- ):
- # bn_layer not used
- super(SpectralTransform, self).__init__()
- self.enable_lfu = enable_lfu
- if stride == 2:
- self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
- else:
- self.downsample = nn.Identity()
- self.stride = stride
- self.conv1 = nn.Sequential(
- nn.Conv2d(
- in_channels, out_channels // 2, kernel_size=1, groups=groups, bias=False
- ),
- # nn.BatchNorm2d(out_channels // 2),
- nn.ReLU(inplace=True),
- )
- self.fu = FourierUnit(out_channels // 2, out_channels // 2, groups, **fu_kwargs)
- if self.enable_lfu:
- self.lfu = FourierUnit(out_channels // 2, out_channels // 2, groups)
- self.conv2 = torch.nn.Conv2d(
- out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False
- )
- def forward(self, x):
- x = self.downsample(x)
- x = self.conv1(x)
- output = self.fu(x)
- if self.enable_lfu:
- n, c, h, w = x.shape
- split_no = 2
- split_s = h // split_no
- xs = torch.cat(
- torch.split(x[:, : c // 4], split_s, dim=-2), dim=1
- ).contiguous()
- xs = torch.cat(torch.split(xs, split_s, dim=-1), dim=1).contiguous()
- xs = self.lfu(xs)
- xs = xs.repeat(1, 1, split_no, split_no).contiguous()
- else:
- xs = 0
- output = self.conv2(x + output + xs)
- return output
- class FFC(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- kernel_size,
- ratio_gin,
- ratio_gout,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- bias=False,
- enable_lfu=True,
- padding_type="reflect",
- gated=False,
- **spectral_kwargs,
- ):
- super(FFC, self).__init__()
- assert stride == 1 or stride == 2, "Stride should be 1 or 2."
- self.stride = stride
- in_cg = int(in_channels * ratio_gin)
- in_cl = in_channels - in_cg
- out_cg = int(out_channels * ratio_gout)
- out_cl = out_channels - out_cg
- # groups_g = 1 if groups == 1 else int(groups * ratio_gout)
- # groups_l = 1 if groups == 1 else groups - groups_g
- self.ratio_gin = ratio_gin
- self.ratio_gout = ratio_gout
- self.global_in_num = in_cg
- module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
- self.convl2l = module(
- in_cl,
- out_cl,
- kernel_size,
- stride,
- padding,
- dilation,
- groups,
- bias,
- padding_mode=padding_type,
- )
- module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
- self.convl2g = module(
- in_cl,
- out_cg,
- kernel_size,
- stride,
- padding,
- dilation,
- groups,
- bias,
- padding_mode=padding_type,
- )
- module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
- self.convg2l = module(
- in_cg,
- out_cl,
- kernel_size,
- stride,
- padding,
- dilation,
- groups,
- bias,
- padding_mode=padding_type,
- )
- module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
- self.convg2g = module(
- in_cg,
- out_cg,
- stride,
- 1 if groups == 1 else groups // 2,
- enable_lfu,
- **spectral_kwargs,
- )
- self.gated = gated
- module = (
- nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
- )
- self.gate = module(in_channels, 2, 1)
- def forward(self, x, fname=None):
- x_l, x_g = x if type(x) is tuple else (x, 0)
- out_xl, out_xg = 0, 0
- if self.gated:
- total_input_parts = [x_l]
- if torch.is_tensor(x_g):
- total_input_parts.append(x_g)
- total_input = torch.cat(total_input_parts, dim=1)
- gates = torch.sigmoid(self.gate(total_input))
- g2l_gate, l2g_gate = gates.chunk(2, dim=1)
- else:
- g2l_gate, l2g_gate = 1, 1
- spec_x = self.convg2g(x_g)
- if self.ratio_gout != 1:
- out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
- if self.ratio_gout != 0:
- out_xg = self.convl2g(x_l) * l2g_gate + spec_x
- return out_xl, out_xg
- class FFC_BN_ACT(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- kernel_size,
- ratio_gin,
- ratio_gout,
- stride=1,
- padding=0,
- dilation=1,
- groups=1,
- bias=False,
- norm_layer=nn.SyncBatchNorm,
- activation_layer=nn.Identity,
- padding_type="reflect",
- enable_lfu=True,
- **kwargs,
- ):
- super(FFC_BN_ACT, self).__init__()
- self.ffc = FFC(
- in_channels,
- out_channels,
- kernel_size,
- ratio_gin,
- ratio_gout,
- stride,
- padding,
- dilation,
- groups,
- bias,
- enable_lfu,
- padding_type=padding_type,
- **kwargs,
- )
- lnorm = nn.Identity if ratio_gout == 1 else norm_layer
- gnorm = nn.Identity if ratio_gout == 0 else norm_layer
- global_channels = int(out_channels * ratio_gout)
- # self.bn_l = lnorm(out_channels - global_channels)
- # self.bn_g = gnorm(global_channels)
- lact = nn.Identity if ratio_gout == 1 else activation_layer
- gact = nn.Identity if ratio_gout == 0 else activation_layer
- self.act_l = lact(inplace=True)
- self.act_g = gact(inplace=True)
- def forward(self, x, fname=None):
- x_l, x_g = self.ffc(
- x,
- fname=fname,
- )
- x_l = self.act_l(x_l)
- x_g = self.act_g(x_g)
- return x_l, x_g
- class FFCResnetBlock(nn.Module):
- def __init__(
- self,
- dim,
- padding_type,
- norm_layer,
- activation_layer=nn.ReLU,
- dilation=1,
- spatial_transform_kwargs=None,
- inline=False,
- ratio_gin=0.75,
- ratio_gout=0.75,
- ):
- super().__init__()
- self.conv1 = FFC_BN_ACT(
- dim,
- dim,
- kernel_size=3,
- padding=dilation,
- dilation=dilation,
- norm_layer=norm_layer,
- activation_layer=activation_layer,
- padding_type=padding_type,
- ratio_gin=ratio_gin,
- ratio_gout=ratio_gout,
- )
- self.conv2 = FFC_BN_ACT(
- dim,
- dim,
- kernel_size=3,
- padding=dilation,
- dilation=dilation,
- norm_layer=norm_layer,
- activation_layer=activation_layer,
- padding_type=padding_type,
- ratio_gin=ratio_gin,
- ratio_gout=ratio_gout,
- )
- self.inline = inline
- def forward(self, x, fname=None):
- if self.inline:
- x_l, x_g = (
- x[:, : -self.conv1.ffc.global_in_num],
- x[:, -self.conv1.ffc.global_in_num :],
- )
- else:
- x_l, x_g = x if type(x) is tuple else (x, 0)
- id_l, id_g = x_l, x_g
- x_l, x_g = self.conv1((x_l, x_g), fname=fname)
- x_l, x_g = self.conv2((x_l, x_g), fname=fname)
- x_l, x_g = id_l + x_l, id_g + x_g
- out = x_l, x_g
- if self.inline:
- out = torch.cat(out, dim=1)
- return out
- class ConcatTupleLayer(nn.Module):
- def forward(self, x):
- assert isinstance(x, tuple)
- x_l, x_g = x
- assert torch.is_tensor(x_l) or torch.is_tensor(x_g)
- if not torch.is_tensor(x_g):
- return x_l
- return torch.cat(x, dim=1)
- class FFCBlock(torch.nn.Module):
- def __init__(
- self,
- dim, # Number of output/input channels.
- kernel_size, # Width and height of the convolution kernel.
- padding,
- ratio_gin=0.75,
- ratio_gout=0.75,
- activation="linear", # Activation function: 'relu', 'lrelu', etc.
- ):
- super().__init__()
- if activation == "linear":
- self.activation = nn.Identity
- else:
- self.activation = nn.ReLU
- self.padding = padding
- self.kernel_size = kernel_size
- self.ffc_block = FFCResnetBlock(
- dim=dim,
- padding_type="reflect",
- norm_layer=nn.SyncBatchNorm,
- activation_layer=self.activation,
- dilation=1,
- ratio_gin=ratio_gin,
- ratio_gout=ratio_gout,
- )
- self.concat_layer = ConcatTupleLayer()
- def forward(self, gen_ft, mask, fname=None):
- x = gen_ft.float()
- x_l, x_g = (
- x[:, : -self.ffc_block.conv1.ffc.global_in_num],
- x[:, -self.ffc_block.conv1.ffc.global_in_num :],
- )
- id_l, id_g = x_l, x_g
- x_l, x_g = self.ffc_block((x_l, x_g), fname=fname)
- x_l, x_g = id_l + x_l, id_g + x_g
- x = self.concat_layer((x_l, x_g))
- return x + gen_ft.float()
- class FFCSkipLayer(torch.nn.Module):
- def __init__(
- self,
- dim, # Number of input/output channels.
- kernel_size=3, # Convolution kernel size.
- ratio_gin=0.75,
- ratio_gout=0.75,
- ):
- super().__init__()
- self.padding = kernel_size // 2
- self.ffc_act = FFCBlock(
- dim=dim,
- kernel_size=kernel_size,
- activation=nn.ReLU,
- padding=self.padding,
- ratio_gin=ratio_gin,
- ratio_gout=ratio_gout,
- )
- def forward(self, gen_ft, mask, fname=None):
- x = self.ffc_act(gen_ft, mask, fname=fname)
- return x
- class SynthesisBlock(torch.nn.Module):
- def __init__(
- self,
- in_channels, # Number of input channels, 0 = first block.
- out_channels, # Number of output channels.
- w_dim, # Intermediate latent (W) dimensionality.
- resolution, # Resolution of this block.
- img_channels, # Number of output color channels.
- is_last, # Is this the last block?
- architecture="skip", # Architecture: 'orig', 'skip', 'resnet'.
- resample_filter=[
- 1,
- 3,
- 3,
- 1,
- ], # Low-pass filter to apply when resampling activations.
- conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
- use_fp16=False, # Use FP16 for this block?
- fp16_channels_last=False, # Use channels-last memory format with FP16?
- **layer_kwargs, # Arguments for SynthesisLayer.
- ):
- assert architecture in ["orig", "skip", "resnet"]
- super().__init__()
- self.in_channels = in_channels
- self.w_dim = w_dim
- self.resolution = resolution
- self.img_channels = img_channels
- self.is_last = is_last
- self.architecture = architecture
- self.use_fp16 = use_fp16
- self.channels_last = use_fp16 and fp16_channels_last
- self.register_buffer("resample_filter", setup_filter(resample_filter))
- self.num_conv = 0
- self.num_torgb = 0
- self.res_ffc = {4: 0, 8: 0, 16: 0, 32: 1, 64: 1, 128: 1, 256: 1, 512: 1}
- if in_channels != 0 and resolution >= 8:
- self.ffc_skip = nn.ModuleList()
- for _ in range(self.res_ffc[resolution]):
- self.ffc_skip.append(FFCSkipLayer(dim=out_channels))
- if in_channels == 0:
- self.const = torch.nn.Parameter(
- torch.randn([out_channels, resolution, resolution])
- )
- if in_channels != 0:
- self.conv0 = SynthesisLayer(
- in_channels,
- out_channels,
- w_dim=w_dim * 3,
- resolution=resolution,
- up=2,
- resample_filter=resample_filter,
- conv_clamp=conv_clamp,
- channels_last=self.channels_last,
- **layer_kwargs,
- )
- self.num_conv += 1
- self.conv1 = SynthesisLayer(
- out_channels,
- out_channels,
- w_dim=w_dim * 3,
- resolution=resolution,
- conv_clamp=conv_clamp,
- channels_last=self.channels_last,
- **layer_kwargs,
- )
- self.num_conv += 1
- if is_last or architecture == "skip":
- self.torgb = ToRGBLayer(
- out_channels,
- img_channels,
- w_dim=w_dim * 3,
- conv_clamp=conv_clamp,
- channels_last=self.channels_last,
- )
- self.num_torgb += 1
- if in_channels != 0 and architecture == "resnet":
- self.skip = Conv2dLayer(
- in_channels,
- out_channels,
- kernel_size=1,
- bias=False,
- up=2,
- resample_filter=resample_filter,
- channels_last=self.channels_last,
- )
- def forward(
- self,
- x,
- mask,
- feats,
- img,
- ws,
- fname=None,
- force_fp32=False,
- fused_modconv=None,
- **layer_kwargs,
- ):
- dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
- dtype = torch.float32
- memory_format = (
- torch.channels_last
- if self.channels_last and not force_fp32
- else torch.contiguous_format
- )
- if fused_modconv is None:
- fused_modconv = (not self.training) and (
- dtype == torch.float32 or int(x.shape[0]) == 1
- )
- x = x.to(dtype=dtype, memory_format=memory_format)
- x_skip = (
- feats[self.resolution].clone().to(dtype=dtype, memory_format=memory_format)
- )
- # Main layers.
- if self.in_channels == 0:
- x = self.conv1(x, ws[1], fused_modconv=fused_modconv, **layer_kwargs)
- elif self.architecture == "resnet":
- y = self.skip(x, gain=np.sqrt(0.5))
- x = self.conv0(
- x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs
- )
- if len(self.ffc_skip) > 0:
- mask = F.interpolate(
- mask,
- size=x_skip.shape[2:],
- )
- z = x + x_skip
- for fres in self.ffc_skip:
- z = fres(z, mask)
- x = x + z
- else:
- x = x + x_skip
- x = self.conv1(
- x,
- ws[1].clone(),
- fused_modconv=fused_modconv,
- gain=np.sqrt(0.5),
- **layer_kwargs,
- )
- x = y.add_(x)
- else:
- x = self.conv0(
- x, ws[0].clone(), fused_modconv=fused_modconv, **layer_kwargs
- )
- if len(self.ffc_skip) > 0:
- mask = F.interpolate(
- mask,
- size=x_skip.shape[2:],
- )
- z = x + x_skip
- for fres in self.ffc_skip:
- z = fres(z, mask)
- x = x + z
- else:
- x = x + x_skip
- x = self.conv1(
- x, ws[1].clone(), fused_modconv=fused_modconv, **layer_kwargs
- )
- # ToRGB.
- if img is not None:
- img = upsample2d(img, self.resample_filter)
- if self.is_last or self.architecture == "skip":
- y = self.torgb(x, ws[2].clone(), fused_modconv=fused_modconv)
- y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
- img = img.add_(y) if img is not None else y
- x = x.to(dtype=dtype)
- assert x.dtype == dtype
- assert img is None or img.dtype == torch.float32
- return x, img
- class SynthesisNetwork(torch.nn.Module):
- def __init__(
- self,
- w_dim, # Intermediate latent (W) dimensionality.
- z_dim, # Output Latent (Z) dimensionality.
- img_resolution, # Output image resolution.
- img_channels, # Number of color channels.
- channel_base=16384, # Overall multiplier for the number of channels.
- channel_max=512, # Maximum number of channels in any layer.
- num_fp16_res=0, # Use FP16 for the N highest resolutions.
- **block_kwargs, # Arguments for SynthesisBlock.
- ):
- assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0
- super().__init__()
- self.w_dim = w_dim
- self.img_resolution = img_resolution
- self.img_resolution_log2 = int(np.log2(img_resolution))
- self.img_channels = img_channels
- self.block_resolutions = [
- 2**i for i in range(3, self.img_resolution_log2 + 1)
- ]
- channels_dict = {
- res: min(channel_base // res, channel_max) for res in self.block_resolutions
- }
- fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
- self.foreword = SynthesisForeword(
- img_channels=img_channels,
- in_channels=min(channel_base // 4, channel_max),
- z_dim=z_dim * 2,
- resolution=4,
- )
- self.num_ws = self.img_resolution_log2 * 2 - 2
- for res in self.block_resolutions:
- if res // 2 in channels_dict.keys():
- in_channels = channels_dict[res // 2] if res > 4 else 0
- else:
- in_channels = min(channel_base // (res // 2), channel_max)
- out_channels = channels_dict[res]
- use_fp16 = res >= fp16_resolution
- use_fp16 = False
- is_last = res == self.img_resolution
- block = SynthesisBlock(
- in_channels,
- out_channels,
- w_dim=w_dim,
- resolution=res,
- img_channels=img_channels,
- is_last=is_last,
- use_fp16=use_fp16,
- **block_kwargs,
- )
- setattr(self, f"b{res}", block)
- def forward(self, x_global, mask, feats, ws, fname=None, **block_kwargs):
- img = None
- x, img = self.foreword(x_global, ws, feats, img)
- for res in self.block_resolutions:
- block = getattr(self, f"b{res}")
- mod_vector0 = []
- mod_vector0.append(ws[:, int(np.log2(res)) * 2 - 5])
- mod_vector0.append(x_global.clone())
- mod_vector0 = torch.cat(mod_vector0, dim=1)
- mod_vector1 = []
- mod_vector1.append(ws[:, int(np.log2(res)) * 2 - 4])
- mod_vector1.append(x_global.clone())
- mod_vector1 = torch.cat(mod_vector1, dim=1)
- mod_vector_rgb = []
- mod_vector_rgb.append(ws[:, int(np.log2(res)) * 2 - 3])
- mod_vector_rgb.append(x_global.clone())
- mod_vector_rgb = torch.cat(mod_vector_rgb, dim=1)
- x, img = block(
- x,
- mask,
- feats,
- img,
- (mod_vector0, mod_vector1, mod_vector_rgb),
- fname=fname,
- **block_kwargs,
- )
- return img
- class MappingNetwork(torch.nn.Module):
- def __init__(
- self,
- z_dim, # Input latent (Z) dimensionality, 0 = no latent.
- c_dim, # Conditioning label (C) dimensionality, 0 = no label.
- w_dim, # Intermediate latent (W) dimensionality.
- num_ws, # Number of intermediate latents to output, None = do not broadcast.
- num_layers=8, # Number of mapping layers.
- embed_features=None, # Label embedding dimensionality, None = same as w_dim.
- layer_features=None, # Number of intermediate features in the mapping layers, None = same as w_dim.
- activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
- lr_multiplier=0.01, # Learning rate multiplier for the mapping layers.
- w_avg_beta=0.995, # Decay for tracking the moving average of W during training, None = do not track.
- ):
- super().__init__()
- self.z_dim = z_dim
- self.c_dim = c_dim
- self.w_dim = w_dim
- self.num_ws = num_ws
- self.num_layers = num_layers
- self.w_avg_beta = w_avg_beta
- if embed_features is None:
- embed_features = w_dim
- if c_dim == 0:
- embed_features = 0
- if layer_features is None:
- layer_features = w_dim
- features_list = (
- [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim]
- )
- if c_dim > 0:
- self.embed = FullyConnectedLayer(c_dim, embed_features)
- for idx in range(num_layers):
- in_features = features_list[idx]
- out_features = features_list[idx + 1]
- layer = FullyConnectedLayer(
- in_features,
- out_features,
- activation=activation,
- lr_multiplier=lr_multiplier,
- )
- setattr(self, f"fc{idx}", layer)
- if num_ws is not None and w_avg_beta is not None:
- self.register_buffer("w_avg", torch.zeros([w_dim]))
- def forward(
- self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False
- ):
- # Embed, normalize, and concat inputs.
- x = None
- with torch.autograd.profiler.record_function("input"):
- if self.z_dim > 0:
- x = normalize_2nd_moment(z.to(torch.float32))
- if self.c_dim > 0:
- y = normalize_2nd_moment(self.embed(c.to(torch.float32)))
- x = torch.cat([x, y], dim=1) if x is not None else y
- # Main layers.
- for idx in range(self.num_layers):
- layer = getattr(self, f"fc{idx}")
- x = layer(x)
- # Update moving average of W.
- if self.w_avg_beta is not None and self.training and not skip_w_avg_update:
- with torch.autograd.profiler.record_function("update_w_avg"):
- self.w_avg.copy_(
- x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta)
- )
- # Broadcast.
- if self.num_ws is not None:
- with torch.autograd.profiler.record_function("broadcast"):
- x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
- # Apply truncation.
- if truncation_psi != 1:
- with torch.autograd.profiler.record_function("truncate"):
- assert self.w_avg_beta is not None
- if self.num_ws is None or truncation_cutoff is None:
- x = self.w_avg.lerp(x, truncation_psi)
- else:
- x[:, :truncation_cutoff] = self.w_avg.lerp(
- x[:, :truncation_cutoff], truncation_psi
- )
- return x
- class Generator(torch.nn.Module):
- def __init__(
- self,
- z_dim, # Input latent (Z) dimensionality.
- c_dim, # Conditioning label (C) dimensionality.
- w_dim, # Intermediate latent (W) dimensionality.
- img_resolution, # Output resolution.
- img_channels, # Number of output color channels.
- encoder_kwargs={}, # Arguments for EncoderNetwork.
- mapping_kwargs={}, # Arguments for MappingNetwork.
- synthesis_kwargs={}, # Arguments for SynthesisNetwork.
- ):
- super().__init__()
- self.z_dim = z_dim
- self.c_dim = c_dim
- self.w_dim = w_dim
- self.img_resolution = img_resolution
- self.img_channels = img_channels
- self.encoder = EncoderNetwork(
- c_dim=c_dim,
- z_dim=z_dim,
- img_resolution=img_resolution,
- img_channels=img_channels,
- **encoder_kwargs,
- )
- self.synthesis = SynthesisNetwork(
- z_dim=z_dim,
- w_dim=w_dim,
- img_resolution=img_resolution,
- img_channels=img_channels,
- **synthesis_kwargs,
- )
- self.num_ws = self.synthesis.num_ws
- self.mapping = MappingNetwork(
- z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs
- )
- def forward(
- self,
- img,
- c,
- fname=None,
- truncation_psi=1,
- truncation_cutoff=None,
- **synthesis_kwargs,
- ):
- mask = img[:, -1].unsqueeze(1)
- x_global, z, feats = self.encoder(img, c)
- ws = self.mapping(
- z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff
- )
- img = self.synthesis(x_global, mask, feats, ws, fname=fname, **synthesis_kwargs)
- return img
- FCF_MODEL_URL = os.environ.get(
- "FCF_MODEL_URL",
- "https://github.com/Sanster/models/releases/download/add_fcf/places_512_G.pth",
- )
- FCF_MODEL_MD5 = os.environ.get("FCF_MODEL_MD5", "3323152bc01bf1c56fd8aba74435a211")
- class FcF(InpaintModel):
- name = "fcf"
- min_size = 512
- pad_mod = 512
- pad_to_square = True
- is_erase_model = True
- def init_model(self, device, **kwargs):
- seed = 0
- random.seed(seed)
- np.random.seed(seed)
- torch.manual_seed(seed)
- torch.cuda.manual_seed_all(seed)
- torch.backends.cudnn.deterministic = True
- torch.backends.cudnn.benchmark = False
- kwargs = {
- "channel_base": 1 * 32768,
- "channel_max": 512,
- "num_fp16_res": 4,
- "conv_clamp": 256,
- }
- G = Generator(
- z_dim=512,
- c_dim=0,
- w_dim=512,
- img_resolution=512,
- img_channels=3,
- synthesis_kwargs=kwargs,
- encoder_kwargs=kwargs,
- mapping_kwargs={"num_layers": 2},
- )
- self.model = load_model(G, FCF_MODEL_URL, device, FCF_MODEL_MD5)
- self.label = torch.zeros([1, self.model.c_dim], device=device)
- @staticmethod
- def download():
- download_model(FCF_MODEL_URL, FCF_MODEL_MD5)
- @staticmethod
- def is_downloaded() -> bool:
- return os.path.exists(get_cache_path_by_url(FCF_MODEL_URL))
- @torch.no_grad()
- def __call__(self, image, mask, config: InpaintRequest):
- """
- images: [H, W, C] RGB, not normalized
- masks: [H, W]
- return: BGR IMAGE
- """
- if image.shape[0] == 512 and image.shape[1] == 512:
- return self._pad_forward(image, mask, config)
- boxes = boxes_from_mask(mask)
- crop_result = []
- config.hd_strategy_crop_margin = 128
- for box in boxes:
- crop_image, crop_mask, crop_box = self._crop_box(image, mask, box, config)
- origin_size = crop_image.shape[:2]
- resize_image = resize_max_size(crop_image, size_limit=512)
- resize_mask = resize_max_size(crop_mask, size_limit=512)
- inpaint_result = self._pad_forward(resize_image, resize_mask, config)
- # only paste masked area result
- inpaint_result = cv2.resize(
- inpaint_result,
- (origin_size[1], origin_size[0]),
- interpolation=cv2.INTER_CUBIC,
- )
- original_pixel_indices = crop_mask < 127
- inpaint_result[original_pixel_indices] = crop_image[:, :, ::-1][
- original_pixel_indices
- ]
- crop_result.append((inpaint_result, crop_box))
- inpaint_result = image[:, :, ::-1].copy()
- for crop_image, crop_box in crop_result:
- x1, y1, x2, y2 = crop_box
- inpaint_result[y1:y2, x1:x2, :] = crop_image
- return inpaint_result
- def forward(self, image, mask, config: InpaintRequest):
- """Input images and output images have same size
- images: [H, W, C] RGB
- masks: [H, W] mask area == 255
- return: BGR IMAGE
- """
- image = norm_img(image) # [0, 1]
- image = image * 2 - 1 # [0, 1] -> [-1, 1]
- mask = (mask > 120) * 255
- mask = norm_img(mask)
- image = torch.from_numpy(image).unsqueeze(0).to(self.device)
- mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
- erased_img = image * (1 - mask)
- input_image = torch.cat([0.5 - mask, erased_img], dim=1)
- output = self.model(
- input_image, self.label, truncation_psi=0.1, noise_mode="none"
- )
- output = (
- (output.permute(0, 2, 3, 1) * 127.5 + 127.5)
- .round()
- .clamp(0, 255)
- .to(torch.uint8)
- )
- output = output[0].cpu().numpy()
- cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
- return cur_res
|