| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455 |
- # https://github.com/TencentARC/BrushNet
- import inspect
- from typing import Any, Callable, Dict, List, Optional, Union
- import numpy as np
- import PIL.Image
- import torch
- import torch.nn.functional as F
- from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
- from diffusers.loaders import (
- FromSingleFileMixin,
- IPAdapterMixin,
- LoraLoaderMixin,
- TextualInversionLoaderMixin,
- )
- from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
- from diffusers.models.lora import adjust_lora_scale_text_encoder
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
- from diffusers.pipelines.stable_diffusion.pipeline_output import (
- StableDiffusionPipelineOutput,
- )
- from diffusers.pipelines.stable_diffusion.safety_checker import (
- StableDiffusionSafetyChecker,
- )
- from diffusers.schedulers import KarrasDiffusionSchedulers
- from diffusers.utils import (
- USE_PEFT_BACKEND,
- deprecate,
- logging,
- replace_example_docstring,
- scale_lora_layers,
- unscale_lora_layers,
- )
- from diffusers.utils.torch_utils import (
- is_compiled_module,
- is_torch_version,
- randn_tensor,
- )
- from transformers import (
- CLIPImageProcessor,
- CLIPTextModel,
- CLIPTokenizer,
- CLIPVisionModelWithProjection,
- )
- from .brushnet import BrushNetModel
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
- EXAMPLE_DOC_STRING = """
- Examples:
- ```py
- from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler
- from diffusers.utils import load_image
- import torch
- import cv2
- import numpy as np
- from PIL import Image
- base_model_path = "runwayml/stable-diffusion-v1-5"
- brushnet_path = "ckpt_path"
- brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch.float16)
- pipe = StableDiffusionBrushNetPipeline.from_pretrained(
- base_model_path, brushnet=brushnet, torch_dtype=torch.float16, low_cpu_mem_usage=False
- )
- # speed up diffusion process with faster scheduler and memory optimization
- pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
- # remove following line if xformers is not installed or when using Torch 2.0.
- # pipe.enable_xformers_memory_efficient_attention()
- # memory optimization.
- pipe.enable_model_cpu_offload()
- image_path="examples/brushnet/src/test_image.jpg"
- mask_path="examples/brushnet/src/test_mask.jpg"
- caption="A cake on the table."
- init_image = cv2.imread(image_path)
- mask_image = 1.*(cv2.imread(mask_path).sum(-1)>255)[:,:,np.newaxis]
- init_image = init_image * (1-mask_image)
- init_image = Image.fromarray(init_image.astype(np.uint8)).convert("RGB")
- mask_image = Image.fromarray(mask_image.astype(np.uint8).repeat(3,-1)*255).convert("RGB")
- generator = torch.Generator("cuda").manual_seed(1234)
- image = pipe(
- caption,
- init_image,
- mask_image,
- num_inference_steps=50,
- generator=generator,
- paintingnet_conditioning_scale=1.0
- ).images[0]
- image.save("output.png")
- ```
- """
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
- def retrieve_timesteps(
- scheduler,
- num_inference_steps: Optional[int] = None,
- device: Optional[Union[str, torch.device]] = None,
- timesteps: Optional[List[int]] = None,
- **kwargs,
- ):
- """
- Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
- custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
- Args:
- scheduler (`SchedulerMixin`):
- The scheduler to get timesteps from.
- num_inference_steps (`int`):
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
- `timesteps` must be `None`.
- device (`str` or `torch.device`, *optional*):
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
- timesteps (`List[int]`, *optional*):
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
- must be `None`.
- Returns:
- `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
- second element is the number of inference steps.
- """
- if timesteps is not None:
- accepts_timesteps = "timesteps" in set(
- inspect.signature(scheduler.set_timesteps).parameters.keys()
- )
- if not accepts_timesteps:
- raise ValueError(
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
- f" timestep schedules. Please check whether you are using the correct scheduler."
- )
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
- timesteps = scheduler.timesteps
- num_inference_steps = len(timesteps)
- else:
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
- timesteps = scheduler.timesteps
- return timesteps, num_inference_steps
- class StableDiffusionBrushNetPipeline(
- DiffusionPipeline,
- StableDiffusionMixin,
- TextualInversionLoaderMixin,
- LoraLoaderMixin,
- IPAdapterMixin,
- FromSingleFileMixin,
- ):
- r"""
- Pipeline for text-to-image generation using Stable Diffusion with BrushNet guidance.
- This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
- implemented for all pipelines (downloading, saving, running on a particular device, etc.).
- The pipeline also inherits the following loading methods:
- - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
- - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
- - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
- - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
- - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
- Args:
- vae ([`AutoencoderKL`]):
- Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
- text_encoder ([`~transformers.CLIPTextModel`]):
- Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
- tokenizer ([`~transformers.CLIPTokenizer`]):
- A `CLIPTokenizer` to tokenize text.
- unet ([`UNet2DConditionModel`]):
- A `UNet2DConditionModel` to denoise the encoded image latents.
- brushnet ([`BrushNetModel`]`):
- Provides additional conditioning to the `unet` during the denoising process.
- scheduler ([`SchedulerMixin`]):
- A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
- [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
- safety_checker ([`StableDiffusionSafetyChecker`]):
- Classification module that estimates whether generated images could be considered offensive or harmful.
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
- about a model's potential harms.
- feature_extractor ([`~transformers.CLIPImageProcessor`]):
- A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
- """
- model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
- _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
- _exclude_from_cpu_offload = ["safety_checker"]
- _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
- def __init__(
- self,
- vae: AutoencoderKL,
- text_encoder: CLIPTextModel,
- tokenizer: CLIPTokenizer,
- unet: UNet2DConditionModel,
- brushnet: BrushNetModel,
- scheduler: KarrasDiffusionSchedulers,
- safety_checker: StableDiffusionSafetyChecker,
- feature_extractor: CLIPImageProcessor,
- image_encoder: CLIPVisionModelWithProjection = None,
- requires_safety_checker: bool = True,
- ):
- super().__init__()
- if safety_checker is None and requires_safety_checker:
- logger.warning(
- f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
- " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
- " results in services or applications open to the public. Both the diffusers team and Hugging Face"
- " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
- " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
- " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
- )
- if safety_checker is not None and feature_extractor is None:
- raise ValueError(
- f"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
- " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
- )
- self.register_modules(
- vae=vae,
- text_encoder=text_encoder,
- tokenizer=tokenizer,
- unet=unet,
- brushnet=brushnet,
- scheduler=scheduler,
- safety_checker=safety_checker,
- feature_extractor=feature_extractor,
- image_encoder=image_encoder,
- )
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
- self.image_processor = VaeImageProcessor(
- vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
- )
- self.register_to_config(requires_safety_checker=requires_safety_checker)
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
- def _encode_prompt(
- self,
- prompt,
- device,
- num_images_per_prompt,
- do_classifier_free_guidance,
- negative_prompt=None,
- prompt_embeds: Optional[torch.FloatTensor] = None,
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
- lora_scale: Optional[float] = None,
- **kwargs,
- ):
- deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
- deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
- prompt_embeds_tuple = self.encode_prompt(
- prompt=prompt,
- device=device,
- num_images_per_prompt=num_images_per_prompt,
- do_classifier_free_guidance=do_classifier_free_guidance,
- negative_prompt=negative_prompt,
- prompt_embeds=prompt_embeds,
- negative_prompt_embeds=negative_prompt_embeds,
- lora_scale=lora_scale,
- **kwargs,
- )
- # concatenate for backwards comp
- prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
- return prompt_embeds
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
- def encode_prompt(
- self,
- prompt,
- device,
- num_images_per_prompt,
- do_classifier_free_guidance,
- negative_prompt=None,
- prompt_embeds: Optional[torch.FloatTensor] = None,
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
- lora_scale: Optional[float] = None,
- clip_skip: Optional[int] = None,
- ):
- r"""
- Encodes the prompt into text encoder hidden states.
- Args:
- prompt (`str` or `List[str]`, *optional*):
- prompt to be encoded
- device: (`torch.device`):
- torch device
- num_images_per_prompt (`int`):
- number of images that should be generated per prompt
- do_classifier_free_guidance (`bool`):
- whether to use classifier free guidance or not
- negative_prompt (`str` or `List[str]`, *optional*):
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
- less than `1`).
- prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
- provided, text embeddings will be generated from `prompt` input argument.
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
- weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
- argument.
- lora_scale (`float`, *optional*):
- A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
- clip_skip (`int`, *optional*):
- Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
- the output of the pre-final layer will be used for computing the prompt embeddings.
- """
- # set lora scale so that monkey patched LoRA
- # function of text encoder can correctly access it
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
- self._lora_scale = lora_scale
- # dynamically adjust the LoRA scale
- if not USE_PEFT_BACKEND:
- adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
- else:
- scale_lora_layers(self.text_encoder, lora_scale)
- if prompt is not None and isinstance(prompt, str):
- batch_size = 1
- elif prompt is not None and isinstance(prompt, list):
- batch_size = len(prompt)
- else:
- batch_size = prompt_embeds.shape[0]
- if prompt_embeds is None:
- # textual inversion: process multi-vector tokens if necessary
- if isinstance(self, TextualInversionLoaderMixin):
- prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
- text_inputs = self.tokenizer(
- prompt,
- padding="max_length",
- max_length=self.tokenizer.model_max_length,
- truncation=True,
- return_tensors="pt",
- )
- text_input_ids = text_inputs.input_ids
- untruncated_ids = self.tokenizer(
- prompt, padding="longest", return_tensors="pt"
- ).input_ids
- if untruncated_ids.shape[-1] >= text_input_ids.shape[
- -1
- ] and not torch.equal(text_input_ids, untruncated_ids):
- removed_text = self.tokenizer.batch_decode(
- untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
- )
- logger.warning(
- "The following part of your input was truncated because CLIP can only handle sequences up to"
- f" {self.tokenizer.model_max_length} tokens: {removed_text}"
- )
- if (
- hasattr(self.text_encoder.config, "use_attention_mask")
- and self.text_encoder.config.use_attention_mask
- ):
- attention_mask = text_inputs.attention_mask.to(device)
- else:
- attention_mask = None
- if clip_skip is None:
- prompt_embeds = self.text_encoder(
- text_input_ids.to(device), attention_mask=attention_mask
- )
- prompt_embeds = prompt_embeds[0]
- else:
- prompt_embeds = self.text_encoder(
- text_input_ids.to(device),
- attention_mask=attention_mask,
- output_hidden_states=True,
- )
- # Access the `hidden_states` first, that contains a tuple of
- # all the hidden states from the encoder layers. Then index into
- # the tuple to access the hidden states from the desired layer.
- prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
- # We also need to apply the final LayerNorm here to not mess with the
- # representations. The `last_hidden_states` that we typically use for
- # obtaining the final prompt representations passes through the LayerNorm
- # layer.
- prompt_embeds = self.text_encoder.text_model.final_layer_norm(
- prompt_embeds
- )
- if self.text_encoder is not None:
- prompt_embeds_dtype = self.text_encoder.dtype
- elif self.unet is not None:
- prompt_embeds_dtype = self.unet.dtype
- else:
- prompt_embeds_dtype = prompt_embeds.dtype
- prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
- bs_embed, seq_len, _ = prompt_embeds.shape
- # duplicate text embeddings for each generation per prompt, using mps friendly method
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
- prompt_embeds = prompt_embeds.view(
- bs_embed * num_images_per_prompt, seq_len, -1
- )
- # get unconditional embeddings for classifier free guidance
- if do_classifier_free_guidance and negative_prompt_embeds is None:
- uncond_tokens: List[str]
- if negative_prompt is None:
- uncond_tokens = [""] * batch_size
- elif prompt is not None and type(prompt) is not type(negative_prompt):
- raise TypeError(
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
- f" {type(prompt)}."
- )
- elif isinstance(negative_prompt, str):
- uncond_tokens = [negative_prompt]
- elif batch_size != len(negative_prompt):
- raise ValueError(
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
- " the batch size of `prompt`."
- )
- else:
- uncond_tokens = negative_prompt
- # textual inversion: process multi-vector tokens if necessary
- if isinstance(self, TextualInversionLoaderMixin):
- uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
- max_length = prompt_embeds.shape[1]
- uncond_input = self.tokenizer(
- uncond_tokens,
- padding="max_length",
- max_length=max_length,
- truncation=True,
- return_tensors="pt",
- )
- if (
- hasattr(self.text_encoder.config, "use_attention_mask")
- and self.text_encoder.config.use_attention_mask
- ):
- attention_mask = uncond_input.attention_mask.to(device)
- else:
- attention_mask = None
- negative_prompt_embeds = self.text_encoder(
- uncond_input.input_ids.to(device),
- attention_mask=attention_mask,
- )
- negative_prompt_embeds = negative_prompt_embeds[0]
- if do_classifier_free_guidance:
- # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
- seq_len = negative_prompt_embeds.shape[1]
- negative_prompt_embeds = negative_prompt_embeds.to(
- dtype=prompt_embeds_dtype, device=device
- )
- negative_prompt_embeds = negative_prompt_embeds.repeat(
- 1, num_images_per_prompt, 1
- )
- negative_prompt_embeds = negative_prompt_embeds.view(
- batch_size * num_images_per_prompt, seq_len, -1
- )
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
- # Retrieve the original scale by scaling back the LoRA layers
- unscale_lora_layers(self.text_encoder, lora_scale)
- return prompt_embeds, negative_prompt_embeds
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
- def encode_image(
- self, image, device, num_images_per_prompt, output_hidden_states=None
- ):
- dtype = next(self.image_encoder.parameters()).dtype
- if not isinstance(image, torch.Tensor):
- image = self.feature_extractor(image, return_tensors="pt").pixel_values
- image = image.to(device=device, dtype=dtype)
- if output_hidden_states:
- image_enc_hidden_states = self.image_encoder(
- image, output_hidden_states=True
- ).hidden_states[-2]
- image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(
- num_images_per_prompt, dim=0
- )
- uncond_image_enc_hidden_states = self.image_encoder(
- torch.zeros_like(image), output_hidden_states=True
- ).hidden_states[-2]
- uncond_image_enc_hidden_states = (
- uncond_image_enc_hidden_states.repeat_interleave(
- num_images_per_prompt, dim=0
- )
- )
- return image_enc_hidden_states, uncond_image_enc_hidden_states
- else:
- image_embeds = self.image_encoder(image).image_embeds
- image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
- uncond_image_embeds = torch.zeros_like(image_embeds)
- return image_embeds, uncond_image_embeds
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
- def prepare_ip_adapter_image_embeds(
- self,
- ip_adapter_image,
- ip_adapter_image_embeds,
- device,
- num_images_per_prompt,
- do_classifier_free_guidance,
- ):
- if ip_adapter_image_embeds is None:
- if not isinstance(ip_adapter_image, list):
- ip_adapter_image = [ip_adapter_image]
- if len(ip_adapter_image) != len(
- self.unet.encoder_hid_proj.image_projection_layers
- ):
- raise ValueError(
- f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
- )
- image_embeds = []
- for single_ip_adapter_image, image_proj_layer in zip(
- ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
- ):
- output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
- single_image_embeds, single_negative_image_embeds = self.encode_image(
- single_ip_adapter_image, device, 1, output_hidden_state
- )
- single_image_embeds = torch.stack(
- [single_image_embeds] * num_images_per_prompt, dim=0
- )
- single_negative_image_embeds = torch.stack(
- [single_negative_image_embeds] * num_images_per_prompt, dim=0
- )
- if do_classifier_free_guidance:
- single_image_embeds = torch.cat(
- [single_negative_image_embeds, single_image_embeds]
- )
- single_image_embeds = single_image_embeds.to(device)
- image_embeds.append(single_image_embeds)
- else:
- repeat_dims = [1]
- image_embeds = []
- for single_image_embeds in ip_adapter_image_embeds:
- if do_classifier_free_guidance:
- (
- single_negative_image_embeds,
- single_image_embeds,
- ) = single_image_embeds.chunk(2)
- single_image_embeds = single_image_embeds.repeat(
- num_images_per_prompt,
- *(repeat_dims * len(single_image_embeds.shape[1:])),
- )
- single_negative_image_embeds = single_negative_image_embeds.repeat(
- num_images_per_prompt,
- *(repeat_dims * len(single_negative_image_embeds.shape[1:])),
- )
- single_image_embeds = torch.cat(
- [single_negative_image_embeds, single_image_embeds]
- )
- else:
- single_image_embeds = single_image_embeds.repeat(
- num_images_per_prompt,
- *(repeat_dims * len(single_image_embeds.shape[1:])),
- )
- image_embeds.append(single_image_embeds)
- return image_embeds
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
- def run_safety_checker(self, image, device, dtype):
- if self.safety_checker is None:
- has_nsfw_concept = None
- else:
- if torch.is_tensor(image):
- feature_extractor_input = self.image_processor.postprocess(
- image, output_type="pil"
- )
- else:
- feature_extractor_input = self.image_processor.numpy_to_pil(image)
- safety_checker_input = self.feature_extractor(
- feature_extractor_input, return_tensors="pt"
- ).to(device)
- image, has_nsfw_concept = self.safety_checker(
- images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
- )
- return image, has_nsfw_concept
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
- def decode_latents(self, latents):
- deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
- deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
- latents = 1 / self.vae.config.scaling_factor * latents
- image = self.vae.decode(latents, return_dict=False)[0]
- image = (image / 2 + 0.5).clamp(0, 1)
- # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
- image = image.cpu().permute(0, 2, 3, 1).float().numpy()
- return image
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
- def prepare_extra_step_kwargs(self, generator, eta):
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
- # and should be between [0, 1]
- accepts_eta = "eta" in set(
- inspect.signature(self.scheduler.step).parameters.keys()
- )
- extra_step_kwargs = {}
- if accepts_eta:
- extra_step_kwargs["eta"] = eta
- # check if the scheduler accepts generator
- accepts_generator = "generator" in set(
- inspect.signature(self.scheduler.step).parameters.keys()
- )
- if accepts_generator:
- extra_step_kwargs["generator"] = generator
- return extra_step_kwargs
- def check_inputs(
- self,
- prompt,
- image,
- mask,
- callback_steps,
- negative_prompt=None,
- prompt_embeds=None,
- negative_prompt_embeds=None,
- ip_adapter_image=None,
- ip_adapter_image_embeds=None,
- brushnet_conditioning_scale=1.0,
- control_guidance_start=0.0,
- control_guidance_end=1.0,
- callback_on_step_end_tensor_inputs=None,
- ):
- if callback_steps is not None and (
- not isinstance(callback_steps, int) or callback_steps <= 0
- ):
- raise ValueError(
- f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
- f" {type(callback_steps)}."
- )
- if callback_on_step_end_tensor_inputs is not None and not all(
- k in self._callback_tensor_inputs
- for k in callback_on_step_end_tensor_inputs
- ):
- raise ValueError(
- f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
- )
- if prompt is not None and prompt_embeds is not None:
- raise ValueError(
- f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
- " only forward one of the two."
- )
- elif prompt is None and prompt_embeds is None:
- raise ValueError(
- "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
- )
- elif prompt is not None and (
- not isinstance(prompt, str) and not isinstance(prompt, list)
- ):
- raise ValueError(
- f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
- )
- if negative_prompt is not None and negative_prompt_embeds is not None:
- raise ValueError(
- f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
- )
- if prompt_embeds is not None and negative_prompt_embeds is not None:
- if prompt_embeds.shape != negative_prompt_embeds.shape:
- raise ValueError(
- "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
- f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
- f" {negative_prompt_embeds.shape}."
- )
- # Check `image`
- is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
- self.brushnet, torch._dynamo.eval_frame.OptimizedModule
- )
- if (
- isinstance(self.brushnet, BrushNetModel)
- or is_compiled
- and isinstance(self.brushnet._orig_mod, BrushNetModel)
- ):
- self.check_image(image, mask, prompt, prompt_embeds)
- else:
- assert False
- # Check `brushnet_conditioning_scale`
- if (
- isinstance(self.brushnet, BrushNetModel)
- or is_compiled
- and isinstance(self.brushnet._orig_mod, BrushNetModel)
- ):
- if not isinstance(brushnet_conditioning_scale, float):
- raise TypeError(
- "For single brushnet: `brushnet_conditioning_scale` must be type `float`."
- )
- else:
- assert False
- if not isinstance(control_guidance_start, (tuple, list)):
- control_guidance_start = [control_guidance_start]
- if not isinstance(control_guidance_end, (tuple, list)):
- control_guidance_end = [control_guidance_end]
- if len(control_guidance_start) != len(control_guidance_end):
- raise ValueError(
- f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
- )
- for start, end in zip(control_guidance_start, control_guidance_end):
- if start >= end:
- raise ValueError(
- f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
- )
- if start < 0.0:
- raise ValueError(
- f"control guidance start: {start} can't be smaller than 0."
- )
- if end > 1.0:
- raise ValueError(
- f"control guidance end: {end} can't be larger than 1.0."
- )
- if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
- raise ValueError(
- "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
- )
- if ip_adapter_image_embeds is not None:
- if not isinstance(ip_adapter_image_embeds, list):
- raise ValueError(
- f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
- )
- elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
- raise ValueError(
- f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
- )
- def check_image(self, image, mask, prompt, prompt_embeds):
- image_is_pil = isinstance(image, PIL.Image.Image)
- image_is_tensor = isinstance(image, torch.Tensor)
- image_is_np = isinstance(image, np.ndarray)
- image_is_pil_list = isinstance(image, list) and isinstance(
- image[0], PIL.Image.Image
- )
- image_is_tensor_list = isinstance(image, list) and isinstance(
- image[0], torch.Tensor
- )
- image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
- if (
- not image_is_pil
- and not image_is_tensor
- and not image_is_np
- and not image_is_pil_list
- and not image_is_tensor_list
- and not image_is_np_list
- ):
- raise TypeError(
- f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
- )
- mask_is_pil = isinstance(mask, PIL.Image.Image)
- mask_is_tensor = isinstance(mask, torch.Tensor)
- mask_is_np = isinstance(mask, np.ndarray)
- mask_is_pil_list = isinstance(mask, list) and isinstance(
- mask[0], PIL.Image.Image
- )
- mask_is_tensor_list = isinstance(mask, list) and isinstance(
- mask[0], torch.Tensor
- )
- mask_is_np_list = isinstance(mask, list) and isinstance(mask[0], np.ndarray)
- if (
- not mask_is_pil
- and not mask_is_tensor
- and not mask_is_np
- and not mask_is_pil_list
- and not mask_is_tensor_list
- and not mask_is_np_list
- ):
- raise TypeError(
- f"mask must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(mask)}"
- )
- if image_is_pil:
- image_batch_size = 1
- else:
- image_batch_size = len(image)
- if prompt is not None and isinstance(prompt, str):
- prompt_batch_size = 1
- elif prompt is not None and isinstance(prompt, list):
- prompt_batch_size = len(prompt)
- elif prompt_embeds is not None:
- prompt_batch_size = prompt_embeds.shape[0]
- if image_batch_size != 1 and image_batch_size != prompt_batch_size:
- raise ValueError(
- f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
- )
- def prepare_image(
- self,
- image,
- width,
- height,
- batch_size,
- num_images_per_prompt,
- device,
- dtype,
- do_classifier_free_guidance=False,
- guess_mode=False,
- ):
- image = self.image_processor.preprocess(image, height=height, width=width).to(
- dtype=torch.float32
- )
- image_batch_size = image.shape[0]
- if image_batch_size == 1:
- repeat_by = batch_size
- else:
- # image batch size is the same as prompt batch size
- repeat_by = num_images_per_prompt
- image = image.repeat_interleave(repeat_by, dim=0)
- image = image.to(device=device, dtype=dtype)
- if do_classifier_free_guidance and not guess_mode:
- image = torch.cat([image] * 2)
- return image
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
- def prepare_latents(
- self,
- batch_size,
- num_channels_latents,
- height,
- width,
- dtype,
- device,
- generator,
- latents=None,
- ):
- shape = (
- batch_size,
- num_channels_latents,
- height // self.vae_scale_factor,
- width // self.vae_scale_factor,
- )
- if isinstance(generator, list) and len(generator) != batch_size:
- raise ValueError(
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
- )
- if latents is None:
- noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
- else:
- noise = latents.to(device)
- # scale the initial noise by the standard deviation required by the scheduler
- latents = noise * self.scheduler.init_noise_sigma
- return latents, noise
- # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
- def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
- """
- See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
- Args:
- timesteps (`torch.Tensor`):
- generate embedding vectors at these timesteps
- embedding_dim (`int`, *optional*, defaults to 512):
- dimension of the embeddings to generate
- dtype:
- data type of the generated embeddings
- Returns:
- `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
- """
- assert len(w.shape) == 1
- w = w * 1000.0
- half_dim = embedding_dim // 2
- emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
- emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
- emb = w.to(dtype)[:, None] * emb[None, :]
- emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
- if embedding_dim % 2 == 1: # zero pad
- emb = torch.nn.functional.pad(emb, (0, 1))
- assert emb.shape == (w.shape[0], embedding_dim)
- return emb
- @property
- def guidance_scale(self):
- return self._guidance_scale
- @property
- def clip_skip(self):
- return self._clip_skip
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
- # corresponds to doing no classifier free guidance.
- @property
- def do_classifier_free_guidance(self):
- return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
- @property
- def cross_attention_kwargs(self):
- return self._cross_attention_kwargs
- @property
- def num_timesteps(self):
- return self._num_timesteps
- @torch.no_grad()
- @replace_example_docstring(EXAMPLE_DOC_STRING)
- def __call__(
- self,
- prompt: Union[str, List[str]] = None,
- image: PipelineImageInput = None,
- mask: PipelineImageInput = None,
- height: Optional[int] = None,
- width: Optional[int] = None,
- num_inference_steps: int = 50,
- timesteps: List[int] = None,
- guidance_scale: float = 7.5,
- negative_prompt: Optional[Union[str, List[str]]] = None,
- num_images_per_prompt: Optional[int] = 1,
- eta: float = 0.0,
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
- latents: Optional[torch.FloatTensor] = None,
- prompt_embeds: Optional[torch.FloatTensor] = None,
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
- ip_adapter_image: Optional[PipelineImageInput] = None,
- ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
- output_type: Optional[str] = "pil",
- return_dict: bool = True,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- brushnet_conditioning_scale: Union[float, List[float]] = 1.0,
- guess_mode: bool = False,
- control_guidance_start: Union[float, List[float]] = 0.0,
- control_guidance_end: Union[float, List[float]] = 1.0,
- clip_skip: Optional[int] = None,
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
- **kwargs,
- ):
- r"""
- The call function to the pipeline for generation.
- Args:
- prompt (`str` or `List[str]`, *optional*):
- The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
- `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
- The BrushNet input condition to provide guidance to the `unet` for generation. If the type is
- specified as `torch.FloatTensor`, it is passed to BrushNet as is. `PIL.Image.Image` can also be
- accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
- and/or width are passed, `image` is resized accordingly. If multiple BrushNets are specified in
- `init`, images must be passed as a list such that each element of the list can be correctly batched for
- input to a single BrushNet. When `prompt` is a list, and if a list of images is passed for a single BrushNet,
- each will be paired with each prompt in the `prompt` list. This also applies to multiple BrushNets,
- where a list of image lists can be passed to batch for each prompt and each BrushNet.
- mask (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
- `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
- The BrushNet input condition to provide guidance to the `unet` for generation. If the type is
- specified as `torch.FloatTensor`, it is passed to BrushNet as is. `PIL.Image.Image` can also be
- accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
- and/or width are passed, `image` is resized accordingly. If multiple BrushNets are specified in
- `init`, images must be passed as a list such that each element of the list can be correctly batched for
- input to a single BrushNet. When `prompt` is a list, and if a list of images is passed for a single BrushNet,
- each will be paired with each prompt in the `prompt` list. This also applies to multiple BrushNets,
- where a list of image lists can be passed to batch for each prompt and each BrushNet.
- height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
- The height in pixels of the generated image.
- width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
- The width in pixels of the generated image.
- num_inference_steps (`int`, *optional*, defaults to 50):
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
- expense of slower inference.
- timesteps (`List[int]`, *optional*):
- Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
- in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
- passed will be used. Must be in descending order.
- guidance_scale (`float`, *optional*, defaults to 7.5):
- A higher guidance scale value encourages the model to generate images closely linked to the text
- `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
- negative_prompt (`str` or `List[str]`, *optional*):
- The prompt or prompts to guide what to not include in image generation. If not defined, you need to
- pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
- num_images_per_prompt (`int`, *optional*, defaults to 1):
- The number of images to generate per prompt.
- eta (`float`, *optional*, defaults to 0.0):
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
- A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
- generation deterministic.
- latents (`torch.FloatTensor`, *optional*):
- Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
- tensor is generated by sampling using the supplied random `generator`.
- prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
- provided, text embeddings are generated from the `prompt` input argument.
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
- not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
- ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
- ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
- Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
- if `do_classifier_free_guidance` is set to `True`.
- If not provided, embeddings are computed from the `ip_adapter_image` input argument.
- output_type (`str`, *optional*, defaults to `"pil"`):
- The output format of the generated image. Choose between `PIL.Image` or `np.array`.
- return_dict (`bool`, *optional*, defaults to `True`):
- Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
- plain tuple.
- callback (`Callable`, *optional*):
- A function that calls every `callback_steps` steps during inference. The function is called with the
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
- callback_steps (`int`, *optional*, defaults to 1):
- The frequency at which the `callback` function is called. If not specified, the callback is called at
- every step.
- cross_attention_kwargs (`dict`, *optional*):
- A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
- brushnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
- The outputs of the BrushNet are multiplied by `brushnet_conditioning_scale` before they are added
- to the residual in the original `unet`. If multiple BrushNets are specified in `init`, you can set
- the corresponding scale as a list.
- guess_mode (`bool`, *optional*, defaults to `False`):
- The BrushNet encoder tries to recognize the content of the input image even if you remove all
- prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
- control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
- The percentage of total steps at which the BrushNet starts applying.
- control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
- The percentage of total steps at which the BrushNet stops applying.
- clip_skip (`int`, *optional*):
- Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
- the output of the pre-final layer will be used for computing the prompt embeddings.
- callback_on_step_end (`Callable`, *optional*):
- A function that calls at the end of each denoising steps during the inference. The function is called
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
- `callback_on_step_end_tensor_inputs`.
- callback_on_step_end_tensor_inputs (`List`, *optional*):
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
- `._callback_tensor_inputs` attribute of your pipeine class.
- Examples:
- Returns:
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
- If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
- otherwise a `tuple` is returned where the first element is a list with the generated images and the
- second element is a list of `bool`s indicating whether the corresponding generated image contains
- "not-safe-for-work" (nsfw) content.
- """
- callback = kwargs.pop("callback", None)
- callback_steps = kwargs.pop("callback_steps", None)
- if callback is not None:
- deprecate(
- "callback",
- "1.0.0",
- "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
- )
- if callback_steps is not None:
- deprecate(
- "callback_steps",
- "1.0.0",
- "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
- )
- brushnet = (
- self.brushnet._orig_mod
- if is_compiled_module(self.brushnet)
- else self.brushnet
- )
- # align format for control guidance
- if not isinstance(control_guidance_start, list) and isinstance(
- control_guidance_end, list
- ):
- control_guidance_start = len(control_guidance_end) * [
- control_guidance_start
- ]
- elif not isinstance(control_guidance_end, list) and isinstance(
- control_guidance_start, list
- ):
- control_guidance_end = len(control_guidance_start) * [control_guidance_end]
- elif not isinstance(control_guidance_start, list) and not isinstance(
- control_guidance_end, list
- ):
- control_guidance_start, control_guidance_end = (
- [control_guidance_start],
- [control_guidance_end],
- )
- # 1. Check inputs. Raise error if not correct
- self.check_inputs(
- prompt,
- image,
- mask,
- callback_steps,
- negative_prompt,
- prompt_embeds,
- negative_prompt_embeds,
- ip_adapter_image,
- ip_adapter_image_embeds,
- brushnet_conditioning_scale,
- control_guidance_start,
- control_guidance_end,
- callback_on_step_end_tensor_inputs,
- )
- self._guidance_scale = guidance_scale
- self._clip_skip = clip_skip
- self._cross_attention_kwargs = cross_attention_kwargs
- # 2. Define call parameters
- if prompt is not None and isinstance(prompt, str):
- batch_size = 1
- elif prompt is not None and isinstance(prompt, list):
- batch_size = len(prompt)
- else:
- batch_size = prompt_embeds.shape[0]
- device = self._execution_device
- global_pool_conditions = (
- brushnet.config.global_pool_conditions
- if isinstance(brushnet, BrushNetModel)
- else brushnet.nets[0].config.global_pool_conditions
- )
- guess_mode = guess_mode or global_pool_conditions
- # 3. Encode input prompt
- text_encoder_lora_scale = (
- self.cross_attention_kwargs.get("scale", None)
- if self.cross_attention_kwargs is not None
- else None
- )
- prompt_embeds, negative_prompt_embeds = self.encode_prompt(
- prompt,
- device,
- num_images_per_prompt,
- self.do_classifier_free_guidance,
- negative_prompt,
- prompt_embeds=prompt_embeds,
- negative_prompt_embeds=negative_prompt_embeds,
- lora_scale=text_encoder_lora_scale,
- clip_skip=self.clip_skip,
- )
- # For classifier free guidance, we need to do two forward passes.
- # Here we concatenate the unconditional and text embeddings into a single batch
- # to avoid doing two forward passes
- if self.do_classifier_free_guidance:
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
- if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
- image_embeds = self.prepare_ip_adapter_image_embeds(
- ip_adapter_image,
- ip_adapter_image_embeds,
- device,
- batch_size * num_images_per_prompt,
- self.do_classifier_free_guidance,
- )
- # 4. Prepare image
- if isinstance(brushnet, BrushNetModel):
- image = self.prepare_image(
- image=image,
- width=width,
- height=height,
- batch_size=batch_size * num_images_per_prompt,
- num_images_per_prompt=num_images_per_prompt,
- device=device,
- dtype=brushnet.dtype,
- do_classifier_free_guidance=self.do_classifier_free_guidance,
- guess_mode=guess_mode,
- )
- original_mask = self.prepare_image(
- image=mask,
- width=width,
- height=height,
- batch_size=batch_size * num_images_per_prompt,
- num_images_per_prompt=num_images_per_prompt,
- device=device,
- dtype=brushnet.dtype,
- do_classifier_free_guidance=self.do_classifier_free_guidance,
- guess_mode=guess_mode,
- )
- original_mask = (original_mask.sum(1)[:, None, :, :] < 0).to(image.dtype)
- height, width = image.shape[-2:]
- else:
- assert False
- # 5. Prepare timesteps
- timesteps, num_inference_steps = retrieve_timesteps(
- self.scheduler, num_inference_steps, device, timesteps
- )
- self._num_timesteps = len(timesteps)
- # 6. Prepare latent variables
- num_channels_latents = self.unet.config.in_channels
- latents, noise = self.prepare_latents(
- batch_size * num_images_per_prompt,
- num_channels_latents,
- height,
- width,
- prompt_embeds.dtype,
- device,
- generator,
- latents,
- )
- # 6.1 prepare condition latents
- conditioning_latents = (
- self.vae.encode(image).latent_dist.sample() * self.vae.config.scaling_factor
- )
- mask = torch.nn.functional.interpolate(
- original_mask,
- size=(conditioning_latents.shape[-2], conditioning_latents.shape[-1]),
- )
- conditioning_latents = torch.concat([conditioning_latents, mask], 1)
- # 6.5 Optionally get Guidance Scale Embedding
- timestep_cond = None
- if self.unet.config.time_cond_proj_dim is not None:
- guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
- batch_size * num_images_per_prompt
- )
- timestep_cond = self.get_guidance_scale_embedding(
- guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
- ).to(device=device, dtype=latents.dtype)
- # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
- # 7.1 Add image embeds for IP-Adapter
- added_cond_kwargs = (
- {"image_embeds": image_embeds}
- if ip_adapter_image is not None or ip_adapter_image_embeds is not None
- else None
- )
- # 7.2 Create tensor stating which brushnets to keep
- brushnet_keep = []
- for i in range(len(timesteps)):
- keeps = [
- 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
- for s, e in zip(control_guidance_start, control_guidance_end)
- ]
- brushnet_keep.append(
- keeps[0] if isinstance(brushnet, BrushNetModel) else keeps
- )
- # 8. Denoising loop
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
- is_unet_compiled = is_compiled_module(self.unet)
- is_brushnet_compiled = is_compiled_module(self.brushnet)
- is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
- with self.progress_bar(total=num_inference_steps) as progress_bar:
- for i, t in enumerate(timesteps):
- # Relevant thread:
- # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
- if (
- is_unet_compiled and is_brushnet_compiled
- ) and is_torch_higher_equal_2_1:
- torch._inductor.cudagraph_mark_step_begin()
- # expand the latents if we are doing classifier free guidance
- latent_model_input = (
- torch.cat([latents] * 2)
- if self.do_classifier_free_guidance
- else latents
- )
- latent_model_input = self.scheduler.scale_model_input(
- latent_model_input, t
- )
- # brushnet(s) inference
- if guess_mode and self.do_classifier_free_guidance:
- # Infer BrushNet only for the conditional batch.
- control_model_input = latents
- control_model_input = self.scheduler.scale_model_input(
- control_model_input, t
- )
- brushnet_prompt_embeds = prompt_embeds.chunk(2)[1]
- else:
- control_model_input = latent_model_input
- brushnet_prompt_embeds = prompt_embeds
- if isinstance(brushnet_keep[i], list):
- cond_scale = [
- c * s
- for c, s in zip(brushnet_conditioning_scale, brushnet_keep[i])
- ]
- else:
- brushnet_cond_scale = brushnet_conditioning_scale
- if isinstance(brushnet_cond_scale, list):
- brushnet_cond_scale = brushnet_cond_scale[0]
- cond_scale = brushnet_cond_scale * brushnet_keep[i]
- (
- down_block_res_samples,
- mid_block_res_sample,
- up_block_res_samples,
- ) = self.brushnet(
- control_model_input,
- t,
- encoder_hidden_states=brushnet_prompt_embeds,
- brushnet_cond=conditioning_latents,
- conditioning_scale=cond_scale,
- guess_mode=guess_mode,
- return_dict=False,
- )
- if guess_mode and self.do_classifier_free_guidance:
- # Infered BrushNet only for the conditional batch.
- # To apply the output of BrushNet to both the unconditional and conditional batches,
- # add 0 to the unconditional batch to keep it unchanged.
- down_block_res_samples = [
- torch.cat([torch.zeros_like(d), d])
- for d in down_block_res_samples
- ]
- mid_block_res_sample = torch.cat(
- [torch.zeros_like(mid_block_res_sample), mid_block_res_sample]
- )
- up_block_res_samples = [
- torch.cat([torch.zeros_like(d), d])
- for d in up_block_res_samples
- ]
- # predict the noise residual
- noise_pred = self.unet(
- latent_model_input,
- t,
- encoder_hidden_states=prompt_embeds,
- timestep_cond=timestep_cond,
- cross_attention_kwargs=self.cross_attention_kwargs,
- down_block_add_samples=down_block_res_samples,
- mid_block_add_sample=mid_block_res_sample,
- up_block_add_samples=up_block_res_samples,
- added_cond_kwargs=added_cond_kwargs,
- return_dict=False,
- )[0]
- # perform guidance
- if self.do_classifier_free_guidance:
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
- noise_pred = noise_pred_uncond + self.guidance_scale * (
- noise_pred_text - noise_pred_uncond
- )
- # compute the previous noisy sample x_t -> x_t-1
- latents = self.scheduler.step(
- noise_pred, t, latents, **extra_step_kwargs, return_dict=False
- )[0]
- if callback_on_step_end is not None:
- callback_kwargs = {}
- for k in callback_on_step_end_tensor_inputs:
- callback_kwargs[k] = locals()[k]
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
- latents = callback_outputs.pop("latents", latents)
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
- negative_prompt_embeds = callback_outputs.pop(
- "negative_prompt_embeds", negative_prompt_embeds
- )
- # call the callback, if provided
- if i == len(timesteps) - 1 or (
- (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
- ):
- progress_bar.update()
- if callback is not None and i % callback_steps == 0:
- step_idx = i // getattr(self.scheduler, "order", 1)
- callback(step_idx, t, latents)
- # If we do sequential model offloading, let's offload unet and brushnet
- # manually for max memory savings
- if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
- self.unet.to("cpu")
- self.brushnet.to("cpu")
- torch.cuda.empty_cache()
- if not output_type == "latent":
- image = self.vae.decode(
- latents / self.vae.config.scaling_factor,
- return_dict=False,
- generator=generator,
- )[0]
- image, has_nsfw_concept = self.run_safety_checker(
- image, device, prompt_embeds.dtype
- )
- else:
- image = latents
- has_nsfw_concept = None
- if has_nsfw_concept is None:
- do_denormalize = [True] * image.shape[0]
- else:
- do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
- image = self.image_processor.postprocess(
- image, output_type=output_type, do_denormalize=do_denormalize
- )
- # Offload all models
- self.maybe_free_model_hooks()
- if not return_dict:
- return (image, has_nsfw_concept)
- return StableDiffusionPipelineOutput(
- images=image, nsfw_content_detected=has_nsfw_concept
- )
|