| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229 |
- import torch
- from torch import nn
- from .RecSVTR import Block
- class Swish(nn.Module):
- def __int__(self):
- super(Swish, self).__int__()
- def forward(self, x):
- return x * torch.sigmoid(x)
- class Im2Im(nn.Module):
- def __init__(self, in_channels, **kwargs):
- super().__init__()
- self.out_channels = in_channels
- def forward(self, x):
- return x
- class Im2Seq(nn.Module):
- def __init__(self, in_channels, **kwargs):
- super().__init__()
- self.out_channels = in_channels
- def forward(self, x):
- B, C, H, W = x.shape
- # assert H == 1
- x = x.reshape(B, C, H * W)
- x = x.permute((0, 2, 1))
- return x
- class EncoderWithRNN(nn.Module):
- def __init__(self, in_channels, **kwargs):
- super(EncoderWithRNN, self).__init__()
- hidden_size = kwargs.get("hidden_size", 256)
- self.out_channels = hidden_size * 2
- self.lstm = nn.LSTM(
- in_channels, hidden_size, bidirectional=True, num_layers=2, batch_first=True
- )
- def forward(self, x):
- self.lstm.flatten_parameters()
- x, _ = self.lstm(x)
- return x
- class SequenceEncoder(nn.Module):
- def __init__(self, in_channels, encoder_type="rnn", **kwargs):
- super(SequenceEncoder, self).__init__()
- self.encoder_reshape = Im2Seq(in_channels)
- self.out_channels = self.encoder_reshape.out_channels
- self.encoder_type = encoder_type
- if encoder_type == "reshape":
- self.only_reshape = True
- else:
- support_encoder_dict = {
- "reshape": Im2Seq,
- "rnn": EncoderWithRNN,
- "svtr": EncoderWithSVTR,
- }
- assert encoder_type in support_encoder_dict, "{} must in {}".format(
- encoder_type, support_encoder_dict.keys()
- )
- self.encoder = support_encoder_dict[encoder_type](
- self.encoder_reshape.out_channels, **kwargs
- )
- self.out_channels = self.encoder.out_channels
- self.only_reshape = False
- def forward(self, x):
- if self.encoder_type != "svtr":
- x = self.encoder_reshape(x)
- if not self.only_reshape:
- x = self.encoder(x)
- return x
- else:
- x = self.encoder(x)
- x = self.encoder_reshape(x)
- return x
- class ConvBNLayer(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- kernel_size=3,
- stride=1,
- padding=0,
- bias_attr=False,
- groups=1,
- act=nn.GELU,
- ):
- super().__init__()
- self.conv = nn.Conv2d(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- groups=groups,
- # weight_attr=paddle.ParamAttr(initializer=nn.initializer.KaimingUniform()),
- bias=bias_attr,
- )
- self.norm = nn.BatchNorm2d(out_channels)
- self.act = Swish()
- def forward(self, inputs):
- out = self.conv(inputs)
- out = self.norm(out)
- out = self.act(out)
- return out
- class EncoderWithSVTR(nn.Module):
- def __init__(
- self,
- in_channels,
- dims=64, # XS
- depth=2,
- hidden_dims=120,
- use_guide=False,
- num_heads=8,
- qkv_bias=True,
- mlp_ratio=2.0,
- drop_rate=0.1,
- attn_drop_rate=0.1,
- drop_path=0.0,
- qk_scale=None,
- ):
- super(EncoderWithSVTR, self).__init__()
- self.depth = depth
- self.use_guide = use_guide
- self.conv1 = ConvBNLayer(in_channels, in_channels // 8, padding=1, act="swish")
- self.conv2 = ConvBNLayer(
- in_channels // 8, hidden_dims, kernel_size=1, act="swish"
- )
- self.svtr_block = nn.ModuleList(
- [
- Block(
- dim=hidden_dims,
- num_heads=num_heads,
- mixer="Global",
- HW=None,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- drop=drop_rate,
- act_layer="swish",
- attn_drop=attn_drop_rate,
- drop_path=drop_path,
- norm_layer="nn.LayerNorm",
- epsilon=1e-05,
- prenorm=False,
- )
- for i in range(depth)
- ]
- )
- self.norm = nn.LayerNorm(hidden_dims, eps=1e-6)
- self.conv3 = ConvBNLayer(hidden_dims, in_channels, kernel_size=1, act="swish")
- # last conv-nxn, the input is concat of input tensor and conv3 output tensor
- self.conv4 = ConvBNLayer(
- 2 * in_channels, in_channels // 8, padding=1, act="swish"
- )
- self.conv1x1 = ConvBNLayer(in_channels // 8, dims, kernel_size=1, act="swish")
- self.out_channels = dims
- self.apply(self._init_weights)
- def _init_weights(self, m):
- # weight initialization
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode="fan_out")
- if m.bias is not None:
- nn.init.zeros_(m.bias)
- elif isinstance(m, nn.BatchNorm2d):
- nn.init.ones_(m.weight)
- nn.init.zeros_(m.bias)
- elif isinstance(m, nn.Linear):
- nn.init.normal_(m.weight, 0, 0.01)
- if m.bias is not None:
- nn.init.zeros_(m.bias)
- elif isinstance(m, nn.ConvTranspose2d):
- nn.init.kaiming_normal_(m.weight, mode="fan_out")
- if m.bias is not None:
- nn.init.zeros_(m.bias)
- elif isinstance(m, nn.LayerNorm):
- nn.init.ones_(m.weight)
- nn.init.zeros_(m.bias)
- def forward(self, x):
- # for use guide
- if self.use_guide:
- z = x.clone()
- z.stop_gradient = True
- else:
- z = x
- # for short cut
- h = z
- # reduce dim
- z = self.conv1(z)
- z = self.conv2(z)
- # SVTR global block
- B, C, H, W = z.shape
- z = z.flatten(2).permute(0, 2, 1)
- for blk in self.svtr_block:
- z = blk(z)
- z = self.norm(z)
- # last stage
- z = z.reshape([-1, H, W, C]).permute(0, 3, 1, 2)
- z = self.conv3(z)
- z = torch.cat((h, z), dim=1)
- z = self.conv1x1(self.conv4(z))
- return z
- if __name__ == "__main__":
- svtrRNN = EncoderWithSVTR(56)
- print(svtrRNN)
|