| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 |
- """SAMPLING ONLY."""
- from functools import partial
- import numpy as np
- import torch
- from tqdm import tqdm
- from sorawm.iopaint.model.anytext.ldm.models.diffusion.sampling_util import (
- norm_thresholding,
- )
- from sorawm.iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
- make_ddim_sampling_parameters,
- make_ddim_timesteps,
- noise_like,
- )
- class PLMSSampler(object):
- def __init__(self, model, schedule="linear", **kwargs):
- super().__init__()
- self.model = model
- self.ddpm_num_timesteps = model.num_timesteps
- self.schedule = schedule
- def register_buffer(self, name, attr):
- if type(attr) == torch.Tensor:
- if attr.device != torch.device("cuda"):
- attr = attr.to(torch.device("cuda"))
- setattr(self, name, attr)
- def make_schedule(
- self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
- ):
- if ddim_eta != 0:
- raise ValueError("ddim_eta must be 0 for PLMS")
- self.ddim_timesteps = make_ddim_timesteps(
- ddim_discr_method=ddim_discretize,
- num_ddim_timesteps=ddim_num_steps,
- num_ddpm_timesteps=self.ddpm_num_timesteps,
- verbose=verbose,
- )
- alphas_cumprod = self.model.alphas_cumprod
- assert (
- alphas_cumprod.shape[0] == self.ddpm_num_timesteps
- ), "alphas have to be defined for each timestep"
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
- self.register_buffer("betas", to_torch(self.model.betas))
- self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
- self.register_buffer(
- "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
- )
- # calculations for diffusion q(x_t | x_{t-1}) and others
- self.register_buffer(
- "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
- )
- self.register_buffer(
- "sqrt_one_minus_alphas_cumprod",
- to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
- )
- self.register_buffer(
- "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
- )
- self.register_buffer(
- "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
- )
- self.register_buffer(
- "sqrt_recipm1_alphas_cumprod",
- to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
- )
- # ddim sampling parameters
- ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
- alphacums=alphas_cumprod.cpu(),
- ddim_timesteps=self.ddim_timesteps,
- eta=ddim_eta,
- verbose=verbose,
- )
- self.register_buffer("ddim_sigmas", ddim_sigmas)
- self.register_buffer("ddim_alphas", ddim_alphas)
- self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
- self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
- sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
- (1 - self.alphas_cumprod_prev)
- / (1 - self.alphas_cumprod)
- * (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
- )
- self.register_buffer(
- "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
- )
- @torch.no_grad()
- def sample(
- self,
- S,
- batch_size,
- shape,
- conditioning=None,
- callback=None,
- normals_sequence=None,
- img_callback=None,
- quantize_x0=False,
- eta=0.0,
- mask=None,
- x0=None,
- temperature=1.0,
- noise_dropout=0.0,
- score_corrector=None,
- corrector_kwargs=None,
- verbose=True,
- x_T=None,
- log_every_t=100,
- unconditional_guidance_scale=1.0,
- unconditional_conditioning=None,
- # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
- dynamic_threshold=None,
- **kwargs,
- ):
- if conditioning is not None:
- if isinstance(conditioning, dict):
- cbs = conditioning[list(conditioning.keys())[0]].shape[0]
- if cbs != batch_size:
- print(
- f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
- )
- else:
- if conditioning.shape[0] != batch_size:
- print(
- f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
- )
- self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
- # sampling
- C, H, W = shape
- size = (batch_size, C, H, W)
- print(f"Data shape for PLMS sampling is {size}")
- samples, intermediates = self.plms_sampling(
- conditioning,
- size,
- callback=callback,
- img_callback=img_callback,
- quantize_denoised=quantize_x0,
- mask=mask,
- x0=x0,
- ddim_use_original_steps=False,
- noise_dropout=noise_dropout,
- temperature=temperature,
- score_corrector=score_corrector,
- corrector_kwargs=corrector_kwargs,
- x_T=x_T,
- log_every_t=log_every_t,
- unconditional_guidance_scale=unconditional_guidance_scale,
- unconditional_conditioning=unconditional_conditioning,
- dynamic_threshold=dynamic_threshold,
- )
- return samples, intermediates
- @torch.no_grad()
- def plms_sampling(
- self,
- cond,
- shape,
- x_T=None,
- ddim_use_original_steps=False,
- callback=None,
- timesteps=None,
- quantize_denoised=False,
- mask=None,
- x0=None,
- img_callback=None,
- log_every_t=100,
- temperature=1.0,
- noise_dropout=0.0,
- score_corrector=None,
- corrector_kwargs=None,
- unconditional_guidance_scale=1.0,
- unconditional_conditioning=None,
- dynamic_threshold=None,
- ):
- device = self.model.betas.device
- b = shape[0]
- if x_T is None:
- img = torch.randn(shape, device=device)
- else:
- img = x_T
- if timesteps is None:
- timesteps = (
- self.ddpm_num_timesteps
- if ddim_use_original_steps
- else self.ddim_timesteps
- )
- elif timesteps is not None and not ddim_use_original_steps:
- subset_end = (
- int(
- min(timesteps / self.ddim_timesteps.shape[0], 1)
- * self.ddim_timesteps.shape[0]
- )
- - 1
- )
- timesteps = self.ddim_timesteps[:subset_end]
- intermediates = {"x_inter": [img], "pred_x0": [img]}
- time_range = (
- list(reversed(range(0, timesteps)))
- if ddim_use_original_steps
- else np.flip(timesteps)
- )
- total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
- print(f"Running PLMS Sampling with {total_steps} timesteps")
- iterator = tqdm(time_range, desc="PLMS Sampler", total=total_steps)
- old_eps = []
- for i, step in enumerate(iterator):
- index = total_steps - i - 1
- ts = torch.full((b,), step, device=device, dtype=torch.long)
- ts_next = torch.full(
- (b,),
- time_range[min(i + 1, len(time_range) - 1)],
- device=device,
- dtype=torch.long,
- )
- if mask is not None:
- assert x0 is not None
- img_orig = self.model.q_sample(
- x0, ts
- ) # TODO: deterministic forward pass?
- img = img_orig * mask + (1.0 - mask) * img
- outs = self.p_sample_plms(
- img,
- cond,
- ts,
- index=index,
- use_original_steps=ddim_use_original_steps,
- quantize_denoised=quantize_denoised,
- temperature=temperature,
- noise_dropout=noise_dropout,
- score_corrector=score_corrector,
- corrector_kwargs=corrector_kwargs,
- unconditional_guidance_scale=unconditional_guidance_scale,
- unconditional_conditioning=unconditional_conditioning,
- old_eps=old_eps,
- t_next=ts_next,
- dynamic_threshold=dynamic_threshold,
- )
- img, pred_x0, e_t = outs
- old_eps.append(e_t)
- if len(old_eps) >= 4:
- old_eps.pop(0)
- if callback:
- callback(i)
- if img_callback:
- img_callback(pred_x0, i)
- if index % log_every_t == 0 or index == total_steps - 1:
- intermediates["x_inter"].append(img)
- intermediates["pred_x0"].append(pred_x0)
- return img, intermediates
- @torch.no_grad()
- def p_sample_plms(
- self,
- x,
- c,
- t,
- index,
- repeat_noise=False,
- use_original_steps=False,
- quantize_denoised=False,
- temperature=1.0,
- noise_dropout=0.0,
- score_corrector=None,
- corrector_kwargs=None,
- unconditional_guidance_scale=1.0,
- unconditional_conditioning=None,
- old_eps=None,
- t_next=None,
- dynamic_threshold=None,
- ):
- b, *_, device = *x.shape, x.device
- def get_model_output(x, t):
- if (
- unconditional_conditioning is None
- or unconditional_guidance_scale == 1.0
- ):
- e_t = self.model.apply_model(x, t, c)
- else:
- x_in = torch.cat([x] * 2)
- t_in = torch.cat([t] * 2)
- c_in = torch.cat([unconditional_conditioning, c])
- e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
- e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
- if score_corrector is not None:
- assert self.model.parameterization == "eps"
- e_t = score_corrector.modify_score(
- self.model, e_t, x, t, c, **corrector_kwargs
- )
- return e_t
- alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
- alphas_prev = (
- self.model.alphas_cumprod_prev
- if use_original_steps
- else self.ddim_alphas_prev
- )
- sqrt_one_minus_alphas = (
- self.model.sqrt_one_minus_alphas_cumprod
- if use_original_steps
- else self.ddim_sqrt_one_minus_alphas
- )
- sigmas = (
- self.model.ddim_sigmas_for_original_num_steps
- if use_original_steps
- else self.ddim_sigmas
- )
- def get_x_prev_and_pred_x0(e_t, index):
- # select parameters corresponding to the currently considered timestep
- a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
- a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
- sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
- sqrt_one_minus_at = torch.full(
- (b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
- )
- # current prediction for x_0
- pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
- if quantize_denoised:
- pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
- if dynamic_threshold is not None:
- pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
- # direction pointing to x_t
- dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
- noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
- if noise_dropout > 0.0:
- noise = torch.nn.functional.dropout(noise, p=noise_dropout)
- x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
- return x_prev, pred_x0
- e_t = get_model_output(x, t)
- if len(old_eps) == 0:
- # Pseudo Improved Euler (2nd order)
- x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
- e_t_next = get_model_output(x_prev, t_next)
- e_t_prime = (e_t + e_t_next) / 2
- elif len(old_eps) == 1:
- # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
- e_t_prime = (3 * e_t - old_eps[-1]) / 2
- elif len(old_eps) == 2:
- # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
- e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
- elif len(old_eps) >= 3:
- # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
- e_t_prime = (
- 55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]
- ) / 24
- x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
- return x_prev, pred_x0, e_t
|