| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093 |
- from dataclasses import dataclass
- from typing import Any, Dict, List, Optional, Tuple, Union
- import torch
- from diffusers import UNet2DConditionModel
- from diffusers.configuration_utils import ConfigMixin, register_to_config
- from diffusers.models.attention_processor import (
- ADDED_KV_ATTENTION_PROCESSORS,
- CROSS_ATTENTION_PROCESSORS,
- AttentionProcessor,
- AttnAddedKVProcessor,
- AttnProcessor,
- )
- from diffusers.models.embeddings import (
- TextImageProjection,
- TextImageTimeEmbedding,
- TextTimeEmbedding,
- TimestepEmbedding,
- Timesteps,
- )
- from diffusers.models.modeling_utils import ModelMixin
- from diffusers.models.unets.unet_2d_blocks import (
- CrossAttnDownBlock2D,
- DownBlock2D,
- get_down_block,
- get_mid_block,
- get_up_block,
- )
- from diffusers.utils import BaseOutput, logging
- from torch import nn
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
- @dataclass
- class BrushNetOutput(BaseOutput):
- """
- The output of [`BrushNetModel`].
- Args:
- up_block_res_samples (`tuple[torch.Tensor]`):
- A tuple of upsample activations at different resolutions for each upsampling block. Each tensor should
- be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
- used to condition the original UNet's upsampling activations.
- down_block_res_samples (`tuple[torch.Tensor]`):
- A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
- be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
- used to condition the original UNet's downsampling activations.
- mid_down_block_re_sample (`torch.Tensor`):
- The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
- `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
- Output can be used to condition the original UNet's middle block activation.
- """
- up_block_res_samples: Tuple[torch.Tensor]
- down_block_res_samples: Tuple[torch.Tensor]
- mid_block_res_sample: torch.Tensor
- class BrushNetModel(ModelMixin, ConfigMixin):
- """
- A BrushNet model.
- Args:
- in_channels (`int`, defaults to 4):
- The number of channels in the input sample.
- flip_sin_to_cos (`bool`, defaults to `True`):
- Whether to flip the sin to cos in the time embedding.
- freq_shift (`int`, defaults to 0):
- The frequency shift to apply to the time embedding.
- down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
- The tuple of downsample blocks to use.
- mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
- Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
- `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
- up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
- The tuple of upsample blocks to use.
- only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
- block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
- The tuple of output channels for each block.
- layers_per_block (`int`, defaults to 2):
- The number of layers per block.
- downsample_padding (`int`, defaults to 1):
- The padding to use for the downsampling convolution.
- mid_block_scale_factor (`float`, defaults to 1):
- The scale factor to use for the mid block.
- act_fn (`str`, defaults to "silu"):
- The activation function to use.
- norm_num_groups (`int`, *optional*, defaults to 32):
- The number of groups to use for the normalization. If None, normalization and activation layers is skipped
- in post-processing.
- norm_eps (`float`, defaults to 1e-5):
- The epsilon to use for the normalization.
- cross_attention_dim (`int`, defaults to 1280):
- The dimension of the cross attention features.
- transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
- The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
- [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
- [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
- encoder_hid_dim (`int`, *optional*, defaults to None):
- If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
- dimension to `cross_attention_dim`.
- encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
- If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
- embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
- attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
- The dimension of the attention heads.
- use_linear_projection (`bool`, defaults to `False`):
- class_embed_type (`str`, *optional*, defaults to `None`):
- The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
- `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
- addition_embed_type (`str`, *optional*, defaults to `None`):
- Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
- "text". "text" will use the `TextTimeEmbedding` layer.
- num_class_embeds (`int`, *optional*, defaults to 0):
- Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
- class conditioning with `class_embed_type` equal to `None`.
- upcast_attention (`bool`, defaults to `False`):
- resnet_time_scale_shift (`str`, defaults to `"default"`):
- Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
- projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
- The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
- `class_embed_type="projection"`.
- brushnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
- The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
- conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
- The tuple of output channel for each block in the `conditioning_embedding` layer.
- global_pool_conditions (`bool`, defaults to `False`):
- TODO(Patrick) - unused parameter.
- addition_embed_type_num_heads (`int`, defaults to 64):
- The number of heads to use for the `TextTimeEmbedding` layer.
- """
- _supports_gradient_checkpointing = True
- @register_to_config
- def __init__(
- self,
- in_channels: int = 4,
- conditioning_channels: int = 5,
- flip_sin_to_cos: bool = True,
- freq_shift: int = 0,
- down_block_types: Tuple[str, ...] = (
- "CrossAttnDownBlock2D",
- "CrossAttnDownBlock2D",
- "CrossAttnDownBlock2D",
- "DownBlock2D",
- ),
- mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
- up_block_types: Tuple[str, ...] = (
- "UpBlock2D",
- "CrossAttnUpBlock2D",
- "CrossAttnUpBlock2D",
- "CrossAttnUpBlock2D",
- ),
- only_cross_attention: Union[bool, Tuple[bool]] = False,
- block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
- layers_per_block: int = 2,
- downsample_padding: int = 1,
- mid_block_scale_factor: float = 1,
- act_fn: str = "silu",
- norm_num_groups: Optional[int] = 32,
- norm_eps: float = 1e-5,
- cross_attention_dim: int = 1280,
- transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
- encoder_hid_dim: Optional[int] = None,
- encoder_hid_dim_type: Optional[str] = None,
- attention_head_dim: Union[int, Tuple[int, ...]] = 8,
- num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
- use_linear_projection: bool = False,
- class_embed_type: Optional[str] = None,
- addition_embed_type: Optional[str] = None,
- addition_time_embed_dim: Optional[int] = None,
- num_class_embeds: Optional[int] = None,
- upcast_attention: bool = False,
- resnet_time_scale_shift: str = "default",
- projection_class_embeddings_input_dim: Optional[int] = None,
- brushnet_conditioning_channel_order: str = "rgb",
- conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (
- 16,
- 32,
- 96,
- 256,
- ),
- global_pool_conditions: bool = False,
- addition_embed_type_num_heads: int = 64,
- ):
- super().__init__()
- # If `num_attention_heads` is not defined (which is the case for most models)
- # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
- # The reason for this behavior is to correct for incorrectly named variables that were introduced
- # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
- # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
- # which is why we correct for the naming here.
- num_attention_heads = num_attention_heads or attention_head_dim
- # Check inputs
- if len(down_block_types) != len(up_block_types):
- raise ValueError(
- f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
- )
- if len(block_out_channels) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
- )
- if not isinstance(only_cross_attention, bool) and len(
- only_cross_attention
- ) != len(down_block_types):
- raise ValueError(
- f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
- )
- if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(
- down_block_types
- ):
- raise ValueError(
- f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
- )
- if isinstance(transformer_layers_per_block, int):
- transformer_layers_per_block = [transformer_layers_per_block] * len(
- down_block_types
- )
- # input
- conv_in_kernel = 3
- conv_in_padding = (conv_in_kernel - 1) // 2
- self.conv_in_condition = nn.Conv2d(
- in_channels + conditioning_channels,
- block_out_channels[0],
- kernel_size=conv_in_kernel,
- padding=conv_in_padding,
- )
- # time
- time_embed_dim = block_out_channels[0] * 4
- self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
- timestep_input_dim = block_out_channels[0]
- self.time_embedding = TimestepEmbedding(
- timestep_input_dim,
- time_embed_dim,
- act_fn=act_fn,
- )
- if encoder_hid_dim_type is None and encoder_hid_dim is not None:
- encoder_hid_dim_type = "text_proj"
- self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
- logger.info(
- "encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined."
- )
- if encoder_hid_dim is None and encoder_hid_dim_type is not None:
- raise ValueError(
- f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
- )
- if encoder_hid_dim_type == "text_proj":
- self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
- elif encoder_hid_dim_type == "text_image_proj":
- # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
- # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
- self.encoder_hid_proj = TextImageProjection(
- text_embed_dim=encoder_hid_dim,
- image_embed_dim=cross_attention_dim,
- cross_attention_dim=cross_attention_dim,
- )
- elif encoder_hid_dim_type is not None:
- raise ValueError(
- f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
- )
- else:
- self.encoder_hid_proj = None
- # class embedding
- if class_embed_type is None and num_class_embeds is not None:
- self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
- elif class_embed_type == "timestep":
- self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
- elif class_embed_type == "identity":
- self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
- elif class_embed_type == "projection":
- if projection_class_embeddings_input_dim is None:
- raise ValueError(
- "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
- )
- # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
- # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
- # 2. it projects from an arbitrary input dimension.
- #
- # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
- # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
- # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
- self.class_embedding = TimestepEmbedding(
- projection_class_embeddings_input_dim, time_embed_dim
- )
- else:
- self.class_embedding = None
- if addition_embed_type == "text":
- if encoder_hid_dim is not None:
- text_time_embedding_from_dim = encoder_hid_dim
- else:
- text_time_embedding_from_dim = cross_attention_dim
- self.add_embedding = TextTimeEmbedding(
- text_time_embedding_from_dim,
- time_embed_dim,
- num_heads=addition_embed_type_num_heads,
- )
- elif addition_embed_type == "text_image":
- # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
- # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
- # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
- self.add_embedding = TextImageTimeEmbedding(
- text_embed_dim=cross_attention_dim,
- image_embed_dim=cross_attention_dim,
- time_embed_dim=time_embed_dim,
- )
- elif addition_embed_type == "text_time":
- self.add_time_proj = Timesteps(
- addition_time_embed_dim, flip_sin_to_cos, freq_shift
- )
- self.add_embedding = TimestepEmbedding(
- projection_class_embeddings_input_dim, time_embed_dim
- )
- elif addition_embed_type is not None:
- raise ValueError(
- f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'."
- )
- self.down_blocks = nn.ModuleList([])
- self.brushnet_down_blocks = nn.ModuleList([])
- if isinstance(only_cross_attention, bool):
- only_cross_attention = [only_cross_attention] * len(down_block_types)
- if isinstance(attention_head_dim, int):
- attention_head_dim = (attention_head_dim,) * len(down_block_types)
- if isinstance(num_attention_heads, int):
- num_attention_heads = (num_attention_heads,) * len(down_block_types)
- # down
- output_channel = block_out_channels[0]
- brushnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_down_blocks.append(brushnet_block)
- for i, down_block_type in enumerate(down_block_types):
- input_channel = output_channel
- output_channel = block_out_channels[i]
- is_final_block = i == len(block_out_channels) - 1
- down_block = get_down_block(
- down_block_type,
- num_layers=layers_per_block,
- transformer_layers_per_block=transformer_layers_per_block[i],
- in_channels=input_channel,
- out_channels=output_channel,
- temb_channels=time_embed_dim,
- add_downsample=not is_final_block,
- resnet_eps=norm_eps,
- resnet_act_fn=act_fn,
- resnet_groups=norm_num_groups,
- cross_attention_dim=cross_attention_dim,
- num_attention_heads=num_attention_heads[i],
- attention_head_dim=attention_head_dim[i]
- if attention_head_dim[i] is not None
- else output_channel,
- downsample_padding=downsample_padding,
- use_linear_projection=use_linear_projection,
- only_cross_attention=only_cross_attention[i],
- upcast_attention=upcast_attention,
- resnet_time_scale_shift=resnet_time_scale_shift,
- )
- self.down_blocks.append(down_block)
- for _ in range(layers_per_block):
- brushnet_block = nn.Conv2d(
- output_channel, output_channel, kernel_size=1
- )
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_down_blocks.append(brushnet_block)
- if not is_final_block:
- brushnet_block = nn.Conv2d(
- output_channel, output_channel, kernel_size=1
- )
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_down_blocks.append(brushnet_block)
- # mid
- mid_block_channel = block_out_channels[-1]
- brushnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_mid_block = brushnet_block
- self.mid_block = get_mid_block(
- mid_block_type,
- transformer_layers_per_block=transformer_layers_per_block[-1],
- in_channels=mid_block_channel,
- temb_channels=time_embed_dim,
- resnet_eps=norm_eps,
- resnet_act_fn=act_fn,
- output_scale_factor=mid_block_scale_factor,
- resnet_time_scale_shift=resnet_time_scale_shift,
- cross_attention_dim=cross_attention_dim,
- num_attention_heads=num_attention_heads[-1],
- resnet_groups=norm_num_groups,
- use_linear_projection=use_linear_projection,
- upcast_attention=upcast_attention,
- )
- # count how many layers upsample the images
- self.num_upsamplers = 0
- # up
- reversed_block_out_channels = list(reversed(block_out_channels))
- reversed_num_attention_heads = list(reversed(num_attention_heads))
- reversed_transformer_layers_per_block = list(
- reversed(transformer_layers_per_block)
- )
- only_cross_attention = list(reversed(only_cross_attention))
- output_channel = reversed_block_out_channels[0]
- self.up_blocks = nn.ModuleList([])
- self.brushnet_up_blocks = nn.ModuleList([])
- for i, up_block_type in enumerate(up_block_types):
- is_final_block = i == len(block_out_channels) - 1
- prev_output_channel = output_channel
- output_channel = reversed_block_out_channels[i]
- input_channel = reversed_block_out_channels[
- min(i + 1, len(block_out_channels) - 1)
- ]
- # add upsample block for all BUT final layer
- if not is_final_block:
- add_upsample = True
- self.num_upsamplers += 1
- else:
- add_upsample = False
- up_block = get_up_block(
- up_block_type,
- num_layers=layers_per_block + 1,
- transformer_layers_per_block=reversed_transformer_layers_per_block[i],
- in_channels=input_channel,
- out_channels=output_channel,
- prev_output_channel=prev_output_channel,
- temb_channels=time_embed_dim,
- add_upsample=add_upsample,
- resnet_eps=norm_eps,
- resnet_act_fn=act_fn,
- resolution_idx=i,
- resnet_groups=norm_num_groups,
- cross_attention_dim=cross_attention_dim,
- num_attention_heads=reversed_num_attention_heads[i],
- use_linear_projection=use_linear_projection,
- only_cross_attention=only_cross_attention[i],
- upcast_attention=upcast_attention,
- resnet_time_scale_shift=resnet_time_scale_shift,
- attention_head_dim=attention_head_dim[i]
- if attention_head_dim[i] is not None
- else output_channel,
- )
- self.up_blocks.append(up_block)
- prev_output_channel = output_channel
- for _ in range(layers_per_block + 1):
- brushnet_block = nn.Conv2d(
- output_channel, output_channel, kernel_size=1
- )
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_up_blocks.append(brushnet_block)
- if not is_final_block:
- brushnet_block = nn.Conv2d(
- output_channel, output_channel, kernel_size=1
- )
- brushnet_block = zero_module(brushnet_block)
- self.brushnet_up_blocks.append(brushnet_block)
- @classmethod
- def from_unet(
- cls,
- unet: UNet2DConditionModel,
- brushnet_conditioning_channel_order: str = "rgb",
- conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (
- 16,
- 32,
- 96,
- 256,
- ),
- load_weights_from_unet: bool = True,
- conditioning_channels: int = 5,
- ):
- r"""
- Instantiate a [`BrushNetModel`] from [`UNet2DConditionModel`].
- Parameters:
- unet (`UNet2DConditionModel`):
- The UNet model weights to copy to the [`BrushNetModel`]. All configuration options are also copied
- where applicable.
- """
- transformer_layers_per_block = (
- unet.config.transformer_layers_per_block
- if "transformer_layers_per_block" in unet.config
- else 1
- )
- encoder_hid_dim = (
- unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
- )
- encoder_hid_dim_type = (
- unet.config.encoder_hid_dim_type
- if "encoder_hid_dim_type" in unet.config
- else None
- )
- addition_embed_type = (
- unet.config.addition_embed_type
- if "addition_embed_type" in unet.config
- else None
- )
- addition_time_embed_dim = (
- unet.config.addition_time_embed_dim
- if "addition_time_embed_dim" in unet.config
- else None
- )
- brushnet = cls(
- in_channels=unet.config.in_channels,
- conditioning_channels=conditioning_channels,
- flip_sin_to_cos=unet.config.flip_sin_to_cos,
- freq_shift=unet.config.freq_shift,
- # down_block_types=['DownBlock2D','DownBlock2D','DownBlock2D','DownBlock2D'],
- down_block_types=[
- "CrossAttnDownBlock2D",
- "CrossAttnDownBlock2D",
- "CrossAttnDownBlock2D",
- "DownBlock2D",
- ],
- # mid_block_type='MidBlock2D',
- mid_block_type="UNetMidBlock2DCrossAttn",
- # up_block_types=['UpBlock2D','UpBlock2D','UpBlock2D','UpBlock2D'],
- up_block_types=[
- "UpBlock2D",
- "CrossAttnUpBlock2D",
- "CrossAttnUpBlock2D",
- "CrossAttnUpBlock2D",
- ],
- only_cross_attention=unet.config.only_cross_attention,
- block_out_channels=unet.config.block_out_channels,
- layers_per_block=unet.config.layers_per_block,
- downsample_padding=unet.config.downsample_padding,
- mid_block_scale_factor=unet.config.mid_block_scale_factor,
- act_fn=unet.config.act_fn,
- norm_num_groups=unet.config.norm_num_groups,
- norm_eps=unet.config.norm_eps,
- cross_attention_dim=unet.config.cross_attention_dim,
- transformer_layers_per_block=transformer_layers_per_block,
- encoder_hid_dim=encoder_hid_dim,
- encoder_hid_dim_type=encoder_hid_dim_type,
- attention_head_dim=unet.config.attention_head_dim,
- num_attention_heads=unet.config.num_attention_heads,
- use_linear_projection=unet.config.use_linear_projection,
- class_embed_type=unet.config.class_embed_type,
- addition_embed_type=addition_embed_type,
- addition_time_embed_dim=addition_time_embed_dim,
- num_class_embeds=unet.config.num_class_embeds,
- upcast_attention=unet.config.upcast_attention,
- resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
- projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
- brushnet_conditioning_channel_order=brushnet_conditioning_channel_order,
- conditioning_embedding_out_channels=conditioning_embedding_out_channels,
- )
- if load_weights_from_unet:
- conv_in_condition_weight = torch.zeros_like(
- brushnet.conv_in_condition.weight
- )
- conv_in_condition_weight[:, :4, ...] = unet.conv_in.weight
- conv_in_condition_weight[:, 4:8, ...] = unet.conv_in.weight
- brushnet.conv_in_condition.weight = torch.nn.Parameter(
- conv_in_condition_weight
- )
- brushnet.conv_in_condition.bias = unet.conv_in.bias
- brushnet.time_proj.load_state_dict(unet.time_proj.state_dict())
- brushnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
- if brushnet.class_embedding:
- brushnet.class_embedding.load_state_dict(
- unet.class_embedding.state_dict()
- )
- brushnet.down_blocks.load_state_dict(
- unet.down_blocks.state_dict(), strict=False
- )
- brushnet.mid_block.load_state_dict(
- unet.mid_block.state_dict(), strict=False
- )
- brushnet.up_blocks.load_state_dict(
- unet.up_blocks.state_dict(), strict=False
- )
- return brushnet.to(unet.dtype)
- @property
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
- def attn_processors(self) -> Dict[str, AttentionProcessor]:
- r"""
- Returns:
- `dict` of attention processors: A dictionary containing all attention processors used in the model with
- indexed by its weight name.
- """
- # set recursively
- processors = {}
- def fn_recursive_add_processors(
- name: str,
- module: torch.nn.Module,
- processors: Dict[str, AttentionProcessor],
- ):
- if hasattr(module, "get_processor"):
- processors[f"{name}.processor"] = module.get_processor(
- return_deprecated_lora=True
- )
- for sub_name, child in module.named_children():
- fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
- return processors
- for name, module in self.named_children():
- fn_recursive_add_processors(name, module, processors)
- return processors
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
- def set_attn_processor(
- self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
- ):
- r"""
- Sets the attention processor to use to compute attention.
- Parameters:
- processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
- The instantiated processor class or a dictionary of processor classes that will be set as the processor
- for **all** `Attention` layers.
- If `processor` is a dict, the key needs to define the path to the corresponding cross attention
- processor. This is strongly recommended when setting trainable attention processors.
- """
- count = len(self.attn_processors.keys())
- if isinstance(processor, dict) and len(processor) != count:
- raise ValueError(
- f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
- f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
- )
- def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
- if hasattr(module, "set_processor"):
- if not isinstance(processor, dict):
- module.set_processor(processor)
- else:
- module.set_processor(processor.pop(f"{name}.processor"))
- for sub_name, child in module.named_children():
- fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
- for name, module in self.named_children():
- fn_recursive_attn_processor(name, module, processor)
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
- def set_default_attn_processor(self):
- """
- Disables custom attention processors and sets the default attention implementation.
- """
- if all(
- proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS
- for proc in self.attn_processors.values()
- ):
- processor = AttnAddedKVProcessor()
- elif all(
- proc.__class__ in CROSS_ATTENTION_PROCESSORS
- for proc in self.attn_processors.values()
- ):
- processor = AttnProcessor()
- else:
- raise ValueError(
- f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
- )
- self.set_attn_processor(processor)
- # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
- def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
- r"""
- Enable sliced attention computation.
- When this option is enabled, the attention module splits the input tensor in slices to compute attention in
- several steps. This is useful for saving some memory in exchange for a small decrease in speed.
- Args:
- slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
- When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
- `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
- provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
- must be a multiple of `slice_size`.
- """
- sliceable_head_dims = []
- def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
- if hasattr(module, "set_attention_slice"):
- sliceable_head_dims.append(module.sliceable_head_dim)
- for child in module.children():
- fn_recursive_retrieve_sliceable_dims(child)
- # retrieve number of attention layers
- for module in self.children():
- fn_recursive_retrieve_sliceable_dims(module)
- num_sliceable_layers = len(sliceable_head_dims)
- if slice_size == "auto":
- # half the attention head size is usually a good trade-off between
- # speed and memory
- slice_size = [dim // 2 for dim in sliceable_head_dims]
- elif slice_size == "max":
- # make smallest slice possible
- slice_size = num_sliceable_layers * [1]
- slice_size = (
- num_sliceable_layers * [slice_size]
- if not isinstance(slice_size, list)
- else slice_size
- )
- if len(slice_size) != len(sliceable_head_dims):
- raise ValueError(
- f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
- f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
- )
- for i in range(len(slice_size)):
- size = slice_size[i]
- dim = sliceable_head_dims[i]
- if size is not None and size > dim:
- raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
- # Recursively walk through all the children.
- # Any children which exposes the set_attention_slice method
- # gets the message
- def fn_recursive_set_attention_slice(
- module: torch.nn.Module, slice_size: List[int]
- ):
- if hasattr(module, "set_attention_slice"):
- module.set_attention_slice(slice_size.pop())
- for child in module.children():
- fn_recursive_set_attention_slice(child, slice_size)
- reversed_slice_size = list(reversed(slice_size))
- for module in self.children():
- fn_recursive_set_attention_slice(module, reversed_slice_size)
- def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
- if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
- module.gradient_checkpointing = value
- def forward(
- self,
- sample: torch.FloatTensor,
- timestep: Union[torch.Tensor, float, int],
- encoder_hidden_states: torch.Tensor,
- brushnet_cond: torch.FloatTensor,
- conditioning_scale: float = 1.0,
- class_labels: Optional[torch.Tensor] = None,
- timestep_cond: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- guess_mode: bool = False,
- return_dict: bool = True,
- ) -> Union[BrushNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
- """
- The [`BrushNetModel`] forward method.
- Args:
- sample (`torch.FloatTensor`):
- The noisy input tensor.
- timestep (`Union[torch.Tensor, float, int]`):
- The number of timesteps to denoise an input.
- encoder_hidden_states (`torch.Tensor`):
- The encoder hidden states.
- brushnet_cond (`torch.FloatTensor`):
- The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
- conditioning_scale (`float`, defaults to `1.0`):
- The scale factor for BrushNet outputs.
- class_labels (`torch.Tensor`, *optional*, defaults to `None`):
- Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
- timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
- Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
- timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
- embeddings.
- attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
- An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
- is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
- negative values to the attention scores corresponding to "discard" tokens.
- added_cond_kwargs (`dict`):
- Additional conditions for the Stable Diffusion XL UNet.
- cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
- A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
- guess_mode (`bool`, defaults to `False`):
- In this mode, the BrushNet encoder tries its best to recognize the input content of the input even if
- you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
- return_dict (`bool`, defaults to `True`):
- Whether or not to return a [`~models.brushnet.BrushNetOutput`] instead of a plain tuple.
- Returns:
- [`~models.brushnet.BrushNetOutput`] **or** `tuple`:
- If `return_dict` is `True`, a [`~models.brushnet.BrushNetOutput`] is returned, otherwise a tuple is
- returned where the first element is the sample tensor.
- """
- # check channel order
- channel_order = self.config.brushnet_conditioning_channel_order
- if channel_order == "rgb":
- # in rgb order by default
- ...
- elif channel_order == "bgr":
- brushnet_cond = torch.flip(brushnet_cond, dims=[1])
- else:
- raise ValueError(
- f"unknown `brushnet_conditioning_channel_order`: {channel_order}"
- )
- # prepare attention_mask
- if attention_mask is not None:
- attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
- attention_mask = attention_mask.unsqueeze(1)
- # 1. time
- timesteps = timestep
- if not torch.is_tensor(timesteps):
- # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
- # This would be a good case for the `match` statement (Python 3.10+)
- is_mps = sample.device.type == "mps"
- if isinstance(timestep, float):
- dtype = torch.float32 if is_mps else torch.float64
- else:
- dtype = torch.int32 if is_mps else torch.int64
- timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
- elif len(timesteps.shape) == 0:
- timesteps = timesteps[None].to(sample.device)
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
- timesteps = timesteps.expand(sample.shape[0])
- t_emb = self.time_proj(timesteps)
- # timesteps does not contain any weights and will always return f32 tensors
- # but time_embedding might actually be running in fp16. so we need to cast here.
- # there might be better ways to encapsulate this.
- t_emb = t_emb.to(dtype=sample.dtype)
- emb = self.time_embedding(t_emb, timestep_cond)
- aug_emb = None
- if self.class_embedding is not None:
- if class_labels is None:
- raise ValueError(
- "class_labels should be provided when num_class_embeds > 0"
- )
- if self.config.class_embed_type == "timestep":
- class_labels = self.time_proj(class_labels)
- class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
- emb = emb + class_emb
- if self.config.addition_embed_type is not None:
- if self.config.addition_embed_type == "text":
- aug_emb = self.add_embedding(encoder_hidden_states)
- elif self.config.addition_embed_type == "text_time":
- if "text_embeds" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
- )
- text_embeds = added_cond_kwargs.get("text_embeds")
- if "time_ids" not in added_cond_kwargs:
- raise ValueError(
- f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
- )
- time_ids = added_cond_kwargs.get("time_ids")
- time_embeds = self.add_time_proj(time_ids.flatten())
- time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
- add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
- add_embeds = add_embeds.to(emb.dtype)
- aug_emb = self.add_embedding(add_embeds)
- emb = emb + aug_emb if aug_emb is not None else emb
- # 2. pre-process
- brushnet_cond = torch.concat([sample, brushnet_cond], 1)
- sample = self.conv_in_condition(brushnet_cond)
- # 3. down
- down_block_res_samples = (sample,)
- for downsample_block in self.down_blocks:
- if (
- hasattr(downsample_block, "has_cross_attention")
- and downsample_block.has_cross_attention
- ):
- sample, res_samples = downsample_block(
- hidden_states=sample,
- temb=emb,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=attention_mask,
- cross_attention_kwargs=cross_attention_kwargs,
- )
- else:
- sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
- down_block_res_samples += res_samples
- # 4. PaintingNet down blocks
- brushnet_down_block_res_samples = ()
- for down_block_res_sample, brushnet_down_block in zip(
- down_block_res_samples, self.brushnet_down_blocks
- ):
- down_block_res_sample = brushnet_down_block(down_block_res_sample)
- brushnet_down_block_res_samples = brushnet_down_block_res_samples + (
- down_block_res_sample,
- )
- # 5. mid
- if self.mid_block is not None:
- if (
- hasattr(self.mid_block, "has_cross_attention")
- and self.mid_block.has_cross_attention
- ):
- sample = self.mid_block(
- sample,
- emb,
- encoder_hidden_states=encoder_hidden_states,
- attention_mask=attention_mask,
- cross_attention_kwargs=cross_attention_kwargs,
- )
- else:
- sample = self.mid_block(sample, emb)
- # 6. BrushNet mid blocks
- brushnet_mid_block_res_sample = self.brushnet_mid_block(sample)
- # 7. up
- up_block_res_samples = ()
- for i, upsample_block in enumerate(self.up_blocks):
- is_final_block = i == len(self.up_blocks) - 1
- res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
- down_block_res_samples = down_block_res_samples[
- : -len(upsample_block.resnets)
- ]
- # if we have not reached the final block and need to forward the
- # upsample size, we do it here
- if not is_final_block:
- upsample_size = down_block_res_samples[-1].shape[2:]
- if (
- hasattr(upsample_block, "has_cross_attention")
- and upsample_block.has_cross_attention
- ):
- sample, up_res_samples = upsample_block(
- hidden_states=sample,
- temb=emb,
- res_hidden_states_tuple=res_samples,
- encoder_hidden_states=encoder_hidden_states,
- cross_attention_kwargs=cross_attention_kwargs,
- upsample_size=upsample_size,
- attention_mask=attention_mask,
- return_res_samples=True,
- )
- else:
- sample, up_res_samples = upsample_block(
- hidden_states=sample,
- temb=emb,
- res_hidden_states_tuple=res_samples,
- upsample_size=upsample_size,
- return_res_samples=True,
- )
- up_block_res_samples += up_res_samples
- # 8. BrushNet up blocks
- brushnet_up_block_res_samples = ()
- for up_block_res_sample, brushnet_up_block in zip(
- up_block_res_samples, self.brushnet_up_blocks
- ):
- up_block_res_sample = brushnet_up_block(up_block_res_sample)
- brushnet_up_block_res_samples = brushnet_up_block_res_samples + (
- up_block_res_sample,
- )
- # 6. scaling
- if guess_mode and not self.config.global_pool_conditions:
- scales = torch.logspace(
- -1,
- 0,
- len(brushnet_down_block_res_samples)
- + 1
- + len(brushnet_up_block_res_samples),
- device=sample.device,
- ) # 0.1 to 1.0
- scales = scales * conditioning_scale
- brushnet_down_block_res_samples = [
- sample * scale
- for sample, scale in zip(
- brushnet_down_block_res_samples,
- scales[: len(brushnet_down_block_res_samples)],
- )
- ]
- brushnet_mid_block_res_sample = (
- brushnet_mid_block_res_sample
- * scales[len(brushnet_down_block_res_samples)]
- )
- brushnet_up_block_res_samples = [
- sample * scale
- for sample, scale in zip(
- brushnet_up_block_res_samples,
- scales[len(brushnet_down_block_res_samples) + 1 :],
- )
- ]
- else:
- brushnet_down_block_res_samples = [
- sample * conditioning_scale
- for sample in brushnet_down_block_res_samples
- ]
- brushnet_mid_block_res_sample = (
- brushnet_mid_block_res_sample * conditioning_scale
- )
- brushnet_up_block_res_samples = [
- sample * conditioning_scale for sample in brushnet_up_block_res_samples
- ]
- if self.config.global_pool_conditions:
- brushnet_down_block_res_samples = [
- torch.mean(sample, dim=(2, 3), keepdim=True)
- for sample in brushnet_down_block_res_samples
- ]
- brushnet_mid_block_res_sample = torch.mean(
- brushnet_mid_block_res_sample, dim=(2, 3), keepdim=True
- )
- brushnet_up_block_res_samples = [
- torch.mean(sample, dim=(2, 3), keepdim=True)
- for sample in brushnet_up_block_res_samples
- ]
- if not return_dict:
- return (
- brushnet_down_block_res_samples,
- brushnet_mid_block_res_sample,
- brushnet_up_block_res_samples,
- )
- return BrushNetOutput(
- down_block_res_samples=brushnet_down_block_res_samples,
- mid_block_res_sample=brushnet_mid_block_res_sample,
- up_block_res_samples=brushnet_up_block_res_samples,
- )
- def zero_module(module):
- for p in module.parameters():
- nn.init.zeros_(p)
- return module
|