instruct_pix2pix.py 2.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
  1. import cv2
  2. import PIL.Image
  3. import torch
  4. from loguru import logger
  5. from sorawm.iopaint.const import INSTRUCT_PIX2PIX_NAME
  6. from sorawm.iopaint.schema import InpaintRequest
  7. from .base import DiffusionInpaintModel
  8. from .utils import enable_low_mem, get_torch_dtype, is_local_files_only
  9. class InstructPix2Pix(DiffusionInpaintModel):
  10. name = INSTRUCT_PIX2PIX_NAME
  11. pad_mod = 8
  12. min_size = 512
  13. def init_model(self, device: torch.device, **kwargs):
  14. from diffusers import StableDiffusionInstructPix2PixPipeline
  15. use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
  16. model_kwargs = {"local_files_only": is_local_files_only(**kwargs)}
  17. if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
  18. logger.info("Disable Stable Diffusion Model NSFW checker")
  19. model_kwargs.update(
  20. dict(
  21. safety_checker=None,
  22. feature_extractor=None,
  23. requires_safety_checker=False,
  24. )
  25. )
  26. self.model = StableDiffusionInstructPix2PixPipeline.from_pretrained(
  27. self.name, variant="fp16", torch_dtype=torch_dtype, **model_kwargs
  28. )
  29. enable_low_mem(self.model, kwargs.get("low_mem", False))
  30. if kwargs.get("cpu_offload", False) and use_gpu:
  31. logger.info("Enable sequential cpu offload")
  32. self.model.enable_sequential_cpu_offload(gpu_id=0)
  33. else:
  34. self.model = self.model.to(device)
  35. def forward(self, image, mask, config: InpaintRequest):
  36. """Input image and output image have same size
  37. image: [H, W, C] RGB
  38. mask: [H, W, 1] 255 means area to repaint
  39. return: BGR IMAGE
  40. edit = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images[0]
  41. """
  42. output = self.model(
  43. image=PIL.Image.fromarray(image),
  44. prompt=config.prompt,
  45. negative_prompt=config.negative_prompt,
  46. num_inference_steps=config.sd_steps,
  47. image_guidance_scale=config.p2p_image_guidance_scale,
  48. guidance_scale=config.sd_guidance_scale,
  49. output_type="np",
  50. generator=torch.manual_seed(config.sd_seed),
  51. ).images[0]
  52. output = (output * 255).round().astype("uint8")
  53. output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
  54. return output