| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 |
- from itertools import chain
- import cv2
- import numpy as np
- import PIL.Image
- import torch
- from loguru import logger
- from transformers import CLIPTextModel, CLIPTokenizer
- from sorawm.iopaint.model.original_sd_configs import get_config_files
- from sorawm.iopaint.schema import InpaintRequest, ModelType
- from ..base import DiffusionInpaintModel
- from ..helper.cpu_text_encoder import CPUTextEncoderWrapper
- from ..utils import (
- enable_low_mem,
- get_torch_dtype,
- handle_from_pretrained_exceptions,
- is_local_files_only,
- )
- from .powerpaint_tokenizer import task_to_prompt
- from .v2.BrushNet_CA import BrushNetModel
- from .v2.unet_2d_blocks import (
- CrossAttnDownBlock2D_forward,
- CrossAttnUpBlock2D_forward,
- DownBlock2D_forward,
- UpBlock2D_forward,
- )
- from .v2.unet_2d_condition import UNet2DConditionModel_forward
- class PowerPaintV2(DiffusionInpaintModel):
- pad_mod = 8
- min_size = 512
- lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
- hf_model_id = "Sanster/PowerPaint_v2"
- def init_model(self, device: torch.device, **kwargs):
- from .powerpaint_tokenizer import PowerPaintTokenizer
- from .v2.pipeline_PowerPaint_Brushnet_CA import (
- StableDiffusionPowerPaintBrushNetPipeline,
- )
- use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
- model_kwargs = {"local_files_only": is_local_files_only(**kwargs)}
- if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
- logger.info("Disable Stable Diffusion Model NSFW checker")
- model_kwargs.update(
- dict(
- safety_checker=None,
- feature_extractor=None,
- requires_safety_checker=False,
- )
- )
- text_encoder_brushnet = CLIPTextModel.from_pretrained(
- self.hf_model_id,
- subfolder="text_encoder_brushnet",
- variant="fp16",
- torch_dtype=torch_dtype,
- local_files_only=model_kwargs["local_files_only"],
- )
- brushnet = BrushNetModel.from_pretrained(
- self.hf_model_id,
- subfolder="PowerPaint_Brushnet",
- variant="fp16",
- torch_dtype=torch_dtype,
- local_files_only=model_kwargs["local_files_only"],
- )
- if self.model_info.is_single_file_diffusers:
- if self.model_info.model_type == ModelType.DIFFUSERS_SD:
- model_kwargs["num_in_channels"] = 4
- else:
- model_kwargs["num_in_channels"] = 9
- pipe = StableDiffusionPowerPaintBrushNetPipeline.from_single_file(
- self.model_id_or_path,
- torch_dtype=torch_dtype,
- load_safety_checker=False,
- original_config_file=get_config_files()["v1"],
- brushnet=brushnet,
- text_encoder_brushnet=text_encoder_brushnet,
- **model_kwargs,
- )
- else:
- pipe = handle_from_pretrained_exceptions(
- StableDiffusionPowerPaintBrushNetPipeline.from_pretrained,
- pretrained_model_name_or_path=self.model_id_or_path,
- torch_dtype=torch_dtype,
- brushnet=brushnet,
- text_encoder_brushnet=text_encoder_brushnet,
- variant="fp16",
- **model_kwargs,
- )
- pipe.tokenizer = PowerPaintTokenizer(
- CLIPTokenizer.from_pretrained(self.hf_model_id, subfolder="tokenizer")
- )
- self.model = pipe
- enable_low_mem(self.model, kwargs.get("low_mem", False))
- if kwargs.get("cpu_offload", False) and use_gpu:
- logger.info("Enable sequential cpu offload")
- self.model.enable_sequential_cpu_offload(gpu_id=0)
- else:
- self.model = self.model.to(device)
- if kwargs["sd_cpu_textencoder"]:
- logger.info("Run Stable Diffusion TextEncoder on CPU")
- self.model.text_encoder = CPUTextEncoderWrapper(
- self.model.text_encoder, torch_dtype
- )
- self.callback = kwargs.pop("callback", None)
- # Monkey patch the forward method of the UNet to use the brushnet_unet_forward method
- self.model.unet.forward = UNet2DConditionModel_forward.__get__(
- self.model.unet, self.model.unet.__class__
- )
- # Monkey patch unet down_blocks to use CrossAttnDownBlock2D_forward
- for down_block in chain(
- self.model.unet.down_blocks, self.model.brushnet.down_blocks
- ):
- if down_block.__class__.__name__ == "CrossAttnDownBlock2D":
- down_block.forward = CrossAttnDownBlock2D_forward.__get__(
- down_block, down_block.__class__
- )
- else:
- down_block.forward = DownBlock2D_forward.__get__(
- down_block, down_block.__class__
- )
- for up_block in chain(self.model.unet.up_blocks, self.model.brushnet.up_blocks):
- if up_block.__class__.__name__ == "CrossAttnUpBlock2D":
- up_block.forward = CrossAttnUpBlock2D_forward.__get__(
- up_block, up_block.__class__
- )
- else:
- up_block.forward = UpBlock2D_forward.__get__(
- up_block, up_block.__class__
- )
- def forward(self, image, mask, config: InpaintRequest):
- """Input image and output image have same size
- image: [H, W, C] RGB
- mask: [H, W, 1] 255 means area to repaint
- return: BGR IMAGE
- """
- self.set_scheduler(config)
- image = image * (1 - mask / 255.0)
- img_h, img_w = image.shape[:2]
- image = PIL.Image.fromarray(image.astype(np.uint8))
- mask = PIL.Image.fromarray(mask[:, :, -1], mode="L").convert("RGB")
- promptA, promptB, negative_promptA, negative_promptB = task_to_prompt(
- config.powerpaint_task
- )
- output = self.model(
- image=image,
- mask=mask,
- promptA=promptA,
- promptB=promptB,
- promptU=config.prompt,
- tradoff=config.fitting_degree,
- tradoff_nag=config.fitting_degree,
- negative_promptA=negative_promptA,
- negative_promptB=negative_promptB,
- negative_promptU=config.negative_prompt,
- num_inference_steps=config.sd_steps,
- # strength=config.sd_strength,
- brushnet_conditioning_scale=1.0,
- guidance_scale=config.sd_guidance_scale,
- output_type="np",
- callback_on_step_end=self.callback,
- height=img_h,
- width=img_w,
- generator=torch.manual_seed(config.sd_seed),
- ).images[0]
- output = (output * 255).round().astype("uint8")
- output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
- return output
|