| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- import cv2
- import numpy as np
- import PIL.Image
- import torch
- from sorawm.iopaint.const import KANDINSKY22_NAME
- from sorawm.iopaint.schema import InpaintRequest
- from .base import DiffusionInpaintModel
- from .utils import enable_low_mem, get_torch_dtype, is_local_files_only
- class Kandinsky(DiffusionInpaintModel):
- pad_mod = 64
- min_size = 512
- def init_model(self, device: torch.device, **kwargs):
- from diffusers import AutoPipelineForInpainting
- use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
- model_kwargs = {
- "torch_dtype": torch_dtype,
- "local_files_only": is_local_files_only(**kwargs),
- }
- self.model = AutoPipelineForInpainting.from_pretrained(
- self.name, **model_kwargs
- ).to(device)
- enable_low_mem(self.model, kwargs.get("low_mem", False))
- self.callback = kwargs.pop("callback", None)
- def forward(self, image, mask, config: InpaintRequest):
- """Input image and output image have same size
- image: [H, W, C] RGB
- mask: [H, W, 1] 255 means area to repaint
- return: BGR IMAGE
- """
- self.set_scheduler(config)
- generator = torch.manual_seed(config.sd_seed)
- mask = mask.astype(np.float32) / 255
- img_h, img_w = image.shape[:2]
- # kandinsky 没有 strength
- output = self.model(
- prompt=config.prompt,
- negative_prompt=config.negative_prompt,
- image=PIL.Image.fromarray(image),
- mask_image=mask[:, :, 0],
- height=img_h,
- width=img_w,
- num_inference_steps=config.sd_steps,
- guidance_scale=config.sd_guidance_scale,
- output_type="np",
- callback_on_step_end=self.callback,
- generator=generator,
- ).images[0]
- output = (output * 255).round().astype("uint8")
- output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
- return output
- class Kandinsky22(Kandinsky):
- name = KANDINSKY22_NAME
|