| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410 |
- import torch
- import torch.nn as nn
- from torch.utils.checkpoint import checkpoint
- from transformers import (
- AutoProcessor,
- CLIPTextModel,
- CLIPTokenizer,
- CLIPVisionModelWithProjection,
- T5EncoderModel,
- T5Tokenizer,
- )
- from sorawm.iopaint.model.anytext.ldm.util import count_params
- def _expand_mask(mask, dtype, tgt_len=None):
- """
- Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
- """
- bsz, src_len = mask.size()
- tgt_len = tgt_len if tgt_len is not None else src_len
- expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
- inverted_mask = 1.0 - expanded_mask
- return inverted_mask.masked_fill(
- inverted_mask.to(torch.bool), torch.finfo(dtype).min
- )
- def _build_causal_attention_mask(bsz, seq_len, dtype):
- # lazily create causal attention mask, with full attention between the vision tokens
- # pytorch uses additive attention mask; fill with -inf
- mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
- mask.fill_(torch.tensor(torch.finfo(dtype).min))
- mask.triu_(1) # zero out the lower diagonal
- mask = mask.unsqueeze(1) # expand mask
- return mask
- class AbstractEncoder(nn.Module):
- def __init__(self):
- super().__init__()
- def encode(self, *args, **kwargs):
- raise NotImplementedError
- class IdentityEncoder(AbstractEncoder):
- def encode(self, x):
- return x
- class ClassEmbedder(nn.Module):
- def __init__(self, embed_dim, n_classes=1000, key="class", ucg_rate=0.1):
- super().__init__()
- self.key = key
- self.embedding = nn.Embedding(n_classes, embed_dim)
- self.n_classes = n_classes
- self.ucg_rate = ucg_rate
- def forward(self, batch, key=None, disable_dropout=False):
- if key is None:
- key = self.key
- # this is for use in crossattn
- c = batch[key][:, None]
- if self.ucg_rate > 0.0 and not disable_dropout:
- mask = 1.0 - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
- c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
- c = c.long()
- c = self.embedding(c)
- return c
- def get_unconditional_conditioning(self, bs, device="cuda"):
- uc_class = (
- self.n_classes - 1
- ) # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
- uc = torch.ones((bs,), device=device) * uc_class
- uc = {self.key: uc}
- return uc
- def disabled_train(self, mode=True):
- """Overwrite model.train with this function to make sure train/eval mode
- does not change anymore."""
- return self
- class FrozenT5Embedder(AbstractEncoder):
- """Uses the T5 transformer encoder for text"""
- def __init__(
- self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True
- ): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
- super().__init__()
- self.tokenizer = T5Tokenizer.from_pretrained(version)
- self.transformer = T5EncoderModel.from_pretrained(version)
- self.device = device
- self.max_length = max_length # TODO: typical value?
- if freeze:
- self.freeze()
- def freeze(self):
- self.transformer = self.transformer.eval()
- # self.train = disabled_train
- for param in self.parameters():
- param.requires_grad = False
- def forward(self, text):
- batch_encoding = self.tokenizer(
- text,
- truncation=True,
- max_length=self.max_length,
- return_length=True,
- return_overflowing_tokens=False,
- padding="max_length",
- return_tensors="pt",
- )
- tokens = batch_encoding["input_ids"].to(self.device)
- outputs = self.transformer(input_ids=tokens)
- z = outputs.last_hidden_state
- return z
- def encode(self, text):
- return self(text)
- class FrozenCLIPEmbedder(AbstractEncoder):
- """Uses the CLIP transformer encoder for text (from huggingface)"""
- LAYERS = ["last", "pooled", "hidden"]
- def __init__(
- self,
- version="openai/clip-vit-large-patch14",
- device="cuda",
- max_length=77,
- freeze=True,
- layer="last",
- layer_idx=None,
- ): # clip-vit-base-patch32
- super().__init__()
- assert layer in self.LAYERS
- self.tokenizer = CLIPTokenizer.from_pretrained(version)
- self.transformer = CLIPTextModel.from_pretrained(version)
- self.device = device
- self.max_length = max_length
- if freeze:
- self.freeze()
- self.layer = layer
- self.layer_idx = layer_idx
- if layer == "hidden":
- assert layer_idx is not None
- assert 0 <= abs(layer_idx) <= 12
- def freeze(self):
- self.transformer = self.transformer.eval()
- # self.train = disabled_train
- for param in self.parameters():
- param.requires_grad = False
- def forward(self, text):
- batch_encoding = self.tokenizer(
- text,
- truncation=True,
- max_length=self.max_length,
- return_length=True,
- return_overflowing_tokens=False,
- padding="max_length",
- return_tensors="pt",
- )
- tokens = batch_encoding["input_ids"].to(self.device)
- outputs = self.transformer(
- input_ids=tokens, output_hidden_states=self.layer == "hidden"
- )
- if self.layer == "last":
- z = outputs.last_hidden_state
- elif self.layer == "pooled":
- z = outputs.pooler_output[:, None, :]
- else:
- z = outputs.hidden_states[self.layer_idx]
- return z
- def encode(self, text):
- return self(text)
- class FrozenCLIPT5Encoder(AbstractEncoder):
- def __init__(
- self,
- clip_version="openai/clip-vit-large-patch14",
- t5_version="google/t5-v1_1-xl",
- device="cuda",
- clip_max_length=77,
- t5_max_length=77,
- ):
- super().__init__()
- self.clip_encoder = FrozenCLIPEmbedder(
- clip_version, device, max_length=clip_max_length
- )
- self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
- print(
- f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
- f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params."
- )
- def encode(self, text):
- return self(text)
- def forward(self, text):
- clip_z = self.clip_encoder.encode(text)
- t5_z = self.t5_encoder.encode(text)
- return [clip_z, t5_z]
- class FrozenCLIPEmbedderT3(AbstractEncoder):
- """Uses the CLIP transformer encoder for text (from Hugging Face)"""
- def __init__(
- self,
- version="openai/clip-vit-large-patch14",
- device="cuda",
- max_length=77,
- freeze=True,
- use_vision=False,
- ):
- super().__init__()
- self.tokenizer = CLIPTokenizer.from_pretrained(version)
- self.transformer = CLIPTextModel.from_pretrained(version)
- if use_vision:
- self.vit = CLIPVisionModelWithProjection.from_pretrained(version)
- self.processor = AutoProcessor.from_pretrained(version)
- self.device = device
- self.max_length = max_length
- if freeze:
- self.freeze()
- def embedding_forward(
- self,
- input_ids=None,
- position_ids=None,
- inputs_embeds=None,
- embedding_manager=None,
- ):
- seq_length = (
- input_ids.shape[-1]
- if input_ids is not None
- else inputs_embeds.shape[-2]
- )
- if position_ids is None:
- position_ids = self.position_ids[:, :seq_length]
- if inputs_embeds is None:
- inputs_embeds = self.token_embedding(input_ids)
- if embedding_manager is not None:
- inputs_embeds = embedding_manager(input_ids, inputs_embeds)
- position_embeddings = self.position_embedding(position_ids)
- embeddings = inputs_embeds + position_embeddings
- return embeddings
- self.transformer.text_model.embeddings.forward = embedding_forward.__get__(
- self.transformer.text_model.embeddings
- )
- def encoder_forward(
- self,
- inputs_embeds,
- attention_mask=None,
- causal_attention_mask=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- ):
- output_attentions = (
- output_attentions
- if output_attentions is not None
- else self.config.output_attentions
- )
- output_hidden_states = (
- output_hidden_states
- if output_hidden_states is not None
- else self.config.output_hidden_states
- )
- return_dict = (
- return_dict if return_dict is not None else self.config.use_return_dict
- )
- encoder_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- hidden_states = inputs_embeds
- for idx, encoder_layer in enumerate(self.layers):
- if output_hidden_states:
- encoder_states = encoder_states + (hidden_states,)
- layer_outputs = encoder_layer(
- hidden_states,
- attention_mask,
- causal_attention_mask,
- output_attentions=output_attentions,
- )
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_attentions = all_attentions + (layer_outputs[1],)
- if output_hidden_states:
- encoder_states = encoder_states + (hidden_states,)
- return hidden_states
- self.transformer.text_model.encoder.forward = encoder_forward.__get__(
- self.transformer.text_model.encoder
- )
- def text_encoder_forward(
- self,
- input_ids=None,
- attention_mask=None,
- position_ids=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- embedding_manager=None,
- ):
- output_attentions = (
- output_attentions
- if output_attentions is not None
- else self.config.output_attentions
- )
- output_hidden_states = (
- output_hidden_states
- if output_hidden_states is not None
- else self.config.output_hidden_states
- )
- return_dict = (
- return_dict if return_dict is not None else self.config.use_return_dict
- )
- if input_ids is None:
- raise ValueError("You have to specify either input_ids")
- input_shape = input_ids.size()
- input_ids = input_ids.view(-1, input_shape[-1])
- hidden_states = self.embeddings(
- input_ids=input_ids,
- position_ids=position_ids,
- embedding_manager=embedding_manager,
- )
- bsz, seq_len = input_shape
- # CLIP's text model uses causal mask, prepare it here.
- # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
- causal_attention_mask = _build_causal_attention_mask(
- bsz, seq_len, hidden_states.dtype
- ).to(hidden_states.device)
- # expand attention_mask
- if attention_mask is not None:
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
- attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
- last_hidden_state = self.encoder(
- inputs_embeds=hidden_states,
- attention_mask=attention_mask,
- causal_attention_mask=causal_attention_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- last_hidden_state = self.final_layer_norm(last_hidden_state)
- return last_hidden_state
- self.transformer.text_model.forward = text_encoder_forward.__get__(
- self.transformer.text_model
- )
- def transformer_forward(
- self,
- input_ids=None,
- attention_mask=None,
- position_ids=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- embedding_manager=None,
- ):
- return self.text_model(
- input_ids=input_ids,
- attention_mask=attention_mask,
- position_ids=position_ids,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- embedding_manager=embedding_manager,
- )
- self.transformer.forward = transformer_forward.__get__(self.transformer)
- def freeze(self):
- self.transformer = self.transformer.eval()
- for param in self.parameters():
- param.requires_grad = False
- def forward(self, text, **kwargs):
- batch_encoding = self.tokenizer(
- text,
- truncation=True,
- max_length=self.max_length,
- return_length=True,
- return_overflowing_tokens=False,
- padding="max_length",
- return_tensors="pt",
- )
- tokens = batch_encoding["input_ids"].to(self.device)
- z = self.transformer(input_ids=tokens, **kwargs)
- return z
- def encode(self, text, **kwargs):
- return self(text, **kwargs)
|