| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- # adopted from
- # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
- # and
- # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
- # and
- # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
- #
- # thanks!
- import math
- import os
- import numpy as np
- import torch
- import torch.nn as nn
- from einops import repeat
- from sorawm.iopaint.model.anytext.ldm.util import instantiate_from_config
- def make_beta_schedule(
- schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3
- ):
- if schedule == "linear":
- betas = (
- torch.linspace(
- linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
- )
- ** 2
- )
- elif schedule == "cosine":
- timesteps = (
- torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
- )
- alphas = timesteps / (1 + cosine_s) * np.pi / 2
- alphas = torch.cos(alphas).pow(2)
- alphas = alphas / alphas[0]
- betas = 1 - alphas[1:] / alphas[:-1]
- betas = np.clip(betas, a_min=0, a_max=0.999)
- elif schedule == "sqrt_linear":
- betas = torch.linspace(
- linear_start, linear_end, n_timestep, dtype=torch.float64
- )
- elif schedule == "sqrt":
- betas = (
- torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
- ** 0.5
- )
- else:
- raise ValueError(f"schedule '{schedule}' unknown.")
- return betas.numpy()
- def make_ddim_timesteps(
- ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True
- ):
- if ddim_discr_method == "uniform":
- c = num_ddpm_timesteps // num_ddim_timesteps
- ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
- elif ddim_discr_method == "quad":
- ddim_timesteps = (
- (np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2
- ).astype(int)
- else:
- raise NotImplementedError(
- f'There is no ddim discretization method called "{ddim_discr_method}"'
- )
- # assert ddim_timesteps.shape[0] == num_ddim_timesteps
- # add one to get the final alpha values right (the ones from first scale to data during sampling)
- steps_out = ddim_timesteps + 1
- if verbose:
- print(f"Selected timesteps for ddim sampler: {steps_out}")
- return steps_out
- def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
- # select alphas for computing the variance schedule
- alphas = alphacums[ddim_timesteps]
- alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
- # according the the formula provided in https://arxiv.org/abs/2010.02502
- sigmas = eta * np.sqrt(
- (1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)
- )
- if verbose:
- print(
- f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}"
- )
- print(
- f"For the chosen value of eta, which is {eta}, "
- f"this results in the following sigma_t schedule for ddim sampler {sigmas}"
- )
- return (
- sigmas.to(torch.float32),
- alphas.to(torch.float32),
- alphas_prev.astype(np.float32),
- )
- def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
- """
- Create a beta schedule that discretizes the given alpha_t_bar function,
- which defines the cumulative product of (1-beta) over time from t = [0,1].
- :param num_diffusion_timesteps: the number of betas to produce.
- :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
- produces the cumulative product of (1-beta) up to that
- part of the diffusion process.
- :param max_beta: the maximum beta to use; use values lower than 1 to
- prevent singularities.
- """
- betas = []
- for i in range(num_diffusion_timesteps):
- t1 = i / num_diffusion_timesteps
- t2 = (i + 1) / num_diffusion_timesteps
- betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
- return np.array(betas)
- def extract_into_tensor(a, t, x_shape):
- b, *_ = t.shape
- out = a.gather(-1, t)
- return out.reshape(b, *((1,) * (len(x_shape) - 1)))
- def checkpoint(func, inputs, params, flag):
- """
- Evaluate a function without caching intermediate activations, allowing for
- reduced memory at the expense of extra compute in the backward pass.
- :param func: the function to evaluate.
- :param inputs: the argument sequence to pass to `func`.
- :param params: a sequence of parameters `func` depends on but does not
- explicitly take as arguments.
- :param flag: if False, disable gradient checkpointing.
- """
- if flag:
- args = tuple(inputs) + tuple(params)
- return CheckpointFunction.apply(func, len(inputs), *args)
- else:
- return func(*inputs)
- class CheckpointFunction(torch.autograd.Function):
- @staticmethod
- def forward(ctx, run_function, length, *args):
- ctx.run_function = run_function
- ctx.input_tensors = list(args[:length])
- ctx.input_params = list(args[length:])
- ctx.gpu_autocast_kwargs = {
- "enabled": torch.is_autocast_enabled(),
- "dtype": torch.get_autocast_gpu_dtype(),
- "cache_enabled": torch.is_autocast_cache_enabled(),
- }
- with torch.no_grad():
- output_tensors = ctx.run_function(*ctx.input_tensors)
- return output_tensors
- @staticmethod
- def backward(ctx, *output_grads):
- ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
- with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
- # Fixes a bug where the first op in run_function modifies the
- # Tensor storage in place, which is not allowed for detach()'d
- # Tensors.
- shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
- output_tensors = ctx.run_function(*shallow_copies)
- input_grads = torch.autograd.grad(
- output_tensors,
- ctx.input_tensors + ctx.input_params,
- output_grads,
- allow_unused=True,
- )
- del ctx.input_tensors
- del ctx.input_params
- del output_tensors
- return (None, None) + input_grads
- def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
- """
- Create sinusoidal timestep embeddings.
- :param timesteps: a 1-D Tensor of N indices, one per batch element.
- These may be fractional.
- :param dim: the dimension of the output.
- :param max_period: controls the minimum frequency of the embeddings.
- :return: an [N x dim] Tensor of positional embeddings.
- """
- if not repeat_only:
- half = dim // 2
- freqs = torch.exp(
- -math.log(max_period)
- * torch.arange(start=0, end=half, dtype=torch.float32)
- / half
- ).to(device=timesteps.device)
- args = timesteps[:, None].float() * freqs[None]
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
- if dim % 2:
- embedding = torch.cat(
- [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
- )
- else:
- embedding = repeat(timesteps, "b -> b d", d=dim)
- return embedding
- def zero_module(module):
- """
- Zero out the parameters of a module and return it.
- """
- for p in module.parameters():
- p.detach().zero_()
- return module
- def scale_module(module, scale):
- """
- Scale the parameters of a module and return it.
- """
- for p in module.parameters():
- p.detach().mul_(scale)
- return module
- def mean_flat(tensor):
- """
- Take the mean over all non-batch dimensions.
- """
- return tensor.mean(dim=list(range(1, len(tensor.shape))))
- def normalization(channels):
- """
- Make a standard normalization layer.
- :param channels: number of input channels.
- :return: an nn.Module for normalization.
- """
- return GroupNorm32(32, channels)
- # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
- class SiLU(nn.Module):
- def forward(self, x):
- return x * torch.sigmoid(x)
- class GroupNorm32(nn.GroupNorm):
- def forward(self, x):
- # return super().forward(x.float()).type(x.dtype)
- return super().forward(x).type(x.dtype)
- def conv_nd(dims, *args, **kwargs):
- """
- Create a 1D, 2D, or 3D convolution module.
- """
- if dims == 1:
- return nn.Conv1d(*args, **kwargs)
- elif dims == 2:
- return nn.Conv2d(*args, **kwargs)
- elif dims == 3:
- return nn.Conv3d(*args, **kwargs)
- raise ValueError(f"unsupported dimensions: {dims}")
- def linear(*args, **kwargs):
- """
- Create a linear module.
- """
- return nn.Linear(*args, **kwargs)
- def avg_pool_nd(dims, *args, **kwargs):
- """
- Create a 1D, 2D, or 3D average pooling module.
- """
- if dims == 1:
- return nn.AvgPool1d(*args, **kwargs)
- elif dims == 2:
- return nn.AvgPool2d(*args, **kwargs)
- elif dims == 3:
- return nn.AvgPool3d(*args, **kwargs)
- raise ValueError(f"unsupported dimensions: {dims}")
- class HybridConditioner(nn.Module):
- def __init__(self, c_concat_config, c_crossattn_config):
- super().__init__()
- self.concat_conditioner = instantiate_from_config(c_concat_config)
- self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
- def forward(self, c_concat, c_crossattn):
- c_concat = self.concat_conditioner(c_concat)
- c_crossattn = self.crossattn_conditioner(c_crossattn)
- return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]}
- def noise_like(shape, device, repeat=False):
- repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
- shape[0], *((1,) * (len(shape) - 1))
- )
- noise = lambda: torch.randn(shape, device=device)
- return repeat_noise() if repeat else noise()
|