| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- import cv2
- import numpy as np
- import torch
- def compute_increased_bbox(bbox, increase_area, preserve_aspect=True):
- left, top, right, bot = bbox
- width = right - left
- height = bot - top
- if preserve_aspect:
- width_increase = max(
- increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width)
- )
- height_increase = max(
- increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height)
- )
- else:
- width_increase = height_increase = increase_area
- left = int(left - width_increase * width)
- top = int(top - height_increase * height)
- right = int(right + width_increase * width)
- bot = int(bot + height_increase * height)
- return (left, top, right, bot)
- def get_valid_bboxes(bboxes, h, w):
- left = max(bboxes[0], 0)
- top = max(bboxes[1], 0)
- right = min(bboxes[2], w)
- bottom = min(bboxes[3], h)
- return (left, top, right, bottom)
- def align_crop_face_landmarks(
- img,
- landmarks,
- output_size,
- transform_size=None,
- enable_padding=True,
- return_inverse_affine=False,
- shrink_ratio=(1, 1),
- ):
- """Align and crop face with landmarks.
- The output_size and transform_size are based on width. The height is
- adjusted based on shrink_ratio_h/shring_ration_w.
- Modified from:
- https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
- Args:
- img (Numpy array): Input image.
- landmarks (Numpy array): 5 or 68 or 98 landmarks.
- output_size (int): Output face size.
- transform_size (ing): Transform size. Usually the four time of
- output_size.
- enable_padding (float): Default: True.
- shrink_ratio (float | tuple[float] | list[float]): Shring the whole
- face for height and width (crop larger area). Default: (1, 1).
- Returns:
- (Numpy array): Cropped face.
- """
- lm_type = "retinaface_5" # Options: dlib_5, retinaface_5
- if isinstance(shrink_ratio, (float, int)):
- shrink_ratio = (shrink_ratio, shrink_ratio)
- if transform_size is None:
- transform_size = output_size * 4
- # Parse landmarks
- lm = np.array(landmarks)
- if lm.shape[0] == 5 and lm_type == "retinaface_5":
- eye_left = lm[0]
- eye_right = lm[1]
- mouth_avg = (lm[3] + lm[4]) * 0.5
- elif lm.shape[0] == 5 and lm_type == "dlib_5":
- lm_eye_left = lm[2:4]
- lm_eye_right = lm[0:2]
- eye_left = np.mean(lm_eye_left, axis=0)
- eye_right = np.mean(lm_eye_right, axis=0)
- mouth_avg = lm[4]
- elif lm.shape[0] == 68:
- lm_eye_left = lm[36:42]
- lm_eye_right = lm[42:48]
- eye_left = np.mean(lm_eye_left, axis=0)
- eye_right = np.mean(lm_eye_right, axis=0)
- mouth_avg = (lm[48] + lm[54]) * 0.5
- elif lm.shape[0] == 98:
- lm_eye_left = lm[60:68]
- lm_eye_right = lm[68:76]
- eye_left = np.mean(lm_eye_left, axis=0)
- eye_right = np.mean(lm_eye_right, axis=0)
- mouth_avg = (lm[76] + lm[82]) * 0.5
- eye_avg = (eye_left + eye_right) * 0.5
- eye_to_eye = eye_right - eye_left
- eye_to_mouth = mouth_avg - eye_avg
- # Get the oriented crop rectangle
- # x: half width of the oriented crop rectangle
- x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
- # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
- # norm with the hypotenuse: get the direction
- x /= np.hypot(*x) # get the hypotenuse of a right triangle
- rect_scale = 1 # TODO: you can edit it to get larger rect
- x *= max(
- np.hypot(*eye_to_eye) * 2.0 * rect_scale,
- np.hypot(*eye_to_mouth) * 1.8 * rect_scale,
- )
- # y: half height of the oriented crop rectangle
- y = np.flipud(x) * [-1, 1]
- x *= shrink_ratio[1] # width
- y *= shrink_ratio[0] # height
- # c: center
- c = eye_avg + eye_to_mouth * 0.1
- # quad: (left_top, left_bottom, right_bottom, right_top)
- quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
- # qsize: side length of the square
- qsize = np.hypot(*x) * 2
- quad_ori = np.copy(quad)
- # Shrink, for large face
- # TODO: do we really need shrink
- shrink = int(np.floor(qsize / output_size * 0.5))
- if shrink > 1:
- h, w = img.shape[0:2]
- rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink)))
- img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA)
- quad /= shrink
- qsize /= shrink
- # Crop
- h, w = img.shape[0:2]
- border = max(int(np.rint(qsize * 0.1)), 3)
- crop = (
- int(np.floor(min(quad[:, 0]))),
- int(np.floor(min(quad[:, 1]))),
- int(np.ceil(max(quad[:, 0]))),
- int(np.ceil(max(quad[:, 1]))),
- )
- crop = (
- max(crop[0] - border, 0),
- max(crop[1] - border, 0),
- min(crop[2] + border, w),
- min(crop[3] + border, h),
- )
- if crop[2] - crop[0] < w or crop[3] - crop[1] < h:
- img = img[crop[1] : crop[3], crop[0] : crop[2], :]
- quad -= crop[0:2]
- # Pad
- # pad: (width_left, height_top, width_right, height_bottom)
- h, w = img.shape[0:2]
- pad = (
- int(np.floor(min(quad[:, 0]))),
- int(np.floor(min(quad[:, 1]))),
- int(np.ceil(max(quad[:, 0]))),
- int(np.ceil(max(quad[:, 1]))),
- )
- pad = (
- max(-pad[0] + border, 0),
- max(-pad[1] + border, 0),
- max(pad[2] - w + border, 0),
- max(pad[3] - h + border, 0),
- )
- if enable_padding and max(pad) > border - 4:
- pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
- img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), "reflect")
- h, w = img.shape[0:2]
- y, x, _ = np.ogrid[:h, :w, :1]
- mask = np.maximum(
- 1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
- 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]),
- )
- blur = int(qsize * 0.02)
- if blur % 2 == 0:
- blur += 1
- blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur))
- img = img.astype("float32")
- img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
- img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
- img = np.clip(img, 0, 255) # float32, [0, 255]
- quad += pad[:2]
- # Transform use cv2
- h_ratio = shrink_ratio[0] / shrink_ratio[1]
- dst_h, dst_w = int(transform_size * h_ratio), transform_size
- template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
- # use cv2.LMEDS method for the equivalence to skimage transform
- # ref: https://blog.csdn.net/yichxi/article/details/115827338
- affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0]
- cropped_face = cv2.warpAffine(
- img,
- affine_matrix,
- (dst_w, dst_h),
- borderMode=cv2.BORDER_CONSTANT,
- borderValue=(135, 133, 132),
- ) # gray
- if output_size < transform_size:
- cropped_face = cv2.resize(
- cropped_face,
- (output_size, int(output_size * h_ratio)),
- interpolation=cv2.INTER_LINEAR,
- )
- if return_inverse_affine:
- dst_h, dst_w = int(output_size * h_ratio), output_size
- template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
- # use cv2.LMEDS method for the equivalence to skimage transform
- # ref: https://blog.csdn.net/yichxi/article/details/115827338
- affine_matrix = cv2.estimateAffinePartial2D(
- quad_ori,
- np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]),
- method=cv2.LMEDS,
- )[0]
- inverse_affine = cv2.invertAffineTransform(affine_matrix)
- else:
- inverse_affine = None
- return cropped_face, inverse_affine
- def paste_face_back(img, face, inverse_affine):
- h, w = img.shape[0:2]
- face_h, face_w = face.shape[0:2]
- inv_restored = cv2.warpAffine(face, inverse_affine, (w, h))
- mask = np.ones((face_h, face_w, 3), dtype=np.float32)
- inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h))
- # remove the black borders
- inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8))
- inv_restored_remove_border = inv_mask_erosion * inv_restored
- total_face_area = np.sum(inv_mask_erosion) // 3
- # compute the fusion edge based on the area of face
- w_edge = int(total_face_area**0.5) // 20
- erosion_radius = w_edge * 2
- inv_mask_center = cv2.erode(
- inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8)
- )
- blur_size = w_edge * 2
- inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
- img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img
- # float32, [0, 255]
- return img
|