| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- def conv_bn(inp, oup, stride=1, leaky=0):
- return nn.Sequential(
- nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
- nn.BatchNorm2d(oup),
- nn.LeakyReLU(negative_slope=leaky, inplace=True),
- )
- def conv_bn_no_relu(inp, oup, stride):
- return nn.Sequential(
- nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
- nn.BatchNorm2d(oup),
- )
- def conv_bn1X1(inp, oup, stride, leaky=0):
- return nn.Sequential(
- nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False),
- nn.BatchNorm2d(oup),
- nn.LeakyReLU(negative_slope=leaky, inplace=True),
- )
- def conv_dw(inp, oup, stride, leaky=0.1):
- return nn.Sequential(
- nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
- nn.BatchNorm2d(inp),
- nn.LeakyReLU(negative_slope=leaky, inplace=True),
- nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
- nn.BatchNorm2d(oup),
- nn.LeakyReLU(negative_slope=leaky, inplace=True),
- )
- class SSH(nn.Module):
- def __init__(self, in_channel, out_channel):
- super(SSH, self).__init__()
- assert out_channel % 4 == 0
- leaky = 0
- if out_channel <= 64:
- leaky = 0.1
- self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1)
- self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky)
- self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
- self.conv7X7_2 = conv_bn(
- out_channel // 4, out_channel // 4, stride=1, leaky=leaky
- )
- self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
- def forward(self, input):
- conv3X3 = self.conv3X3(input)
- conv5X5_1 = self.conv5X5_1(input)
- conv5X5 = self.conv5X5_2(conv5X5_1)
- conv7X7_2 = self.conv7X7_2(conv5X5_1)
- conv7X7 = self.conv7x7_3(conv7X7_2)
- out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
- out = F.relu(out)
- return out
- class FPN(nn.Module):
- def __init__(self, in_channels_list, out_channels):
- super(FPN, self).__init__()
- leaky = 0
- if out_channels <= 64:
- leaky = 0.1
- self.output1 = conv_bn1X1(
- in_channels_list[0], out_channels, stride=1, leaky=leaky
- )
- self.output2 = conv_bn1X1(
- in_channels_list[1], out_channels, stride=1, leaky=leaky
- )
- self.output3 = conv_bn1X1(
- in_channels_list[2], out_channels, stride=1, leaky=leaky
- )
- self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky)
- self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky)
- def forward(self, input):
- # names = list(input.keys())
- # input = list(input.values())
- output1 = self.output1(input[0])
- output2 = self.output2(input[1])
- output3 = self.output3(input[2])
- up3 = F.interpolate(
- output3, size=[output2.size(2), output2.size(3)], mode="nearest"
- )
- output2 = output2 + up3
- output2 = self.merge2(output2)
- up2 = F.interpolate(
- output2, size=[output1.size(2), output1.size(3)], mode="nearest"
- )
- output1 = output1 + up2
- output1 = self.merge1(output1)
- out = [output1, output2, output3]
- return out
- class MobileNetV1(nn.Module):
- def __init__(self):
- super(MobileNetV1, self).__init__()
- self.stage1 = nn.Sequential(
- conv_bn(3, 8, 2, leaky=0.1), # 3
- conv_dw(8, 16, 1), # 7
- conv_dw(16, 32, 2), # 11
- conv_dw(32, 32, 1), # 19
- conv_dw(32, 64, 2), # 27
- conv_dw(64, 64, 1), # 43
- )
- self.stage2 = nn.Sequential(
- conv_dw(64, 128, 2), # 43 + 16 = 59
- conv_dw(128, 128, 1), # 59 + 32 = 91
- conv_dw(128, 128, 1), # 91 + 32 = 123
- conv_dw(128, 128, 1), # 123 + 32 = 155
- conv_dw(128, 128, 1), # 155 + 32 = 187
- conv_dw(128, 128, 1), # 187 + 32 = 219
- )
- self.stage3 = nn.Sequential(
- conv_dw(128, 256, 2), # 219 +3 2 = 241
- conv_dw(256, 256, 1), # 241 + 64 = 301
- )
- self.avg = nn.AdaptiveAvgPool2d((1, 1))
- self.fc = nn.Linear(256, 1000)
- def forward(self, x):
- x = self.stage1(x)
- x = self.stage2(x)
- x = self.stage3(x)
- x = self.avg(x)
- # x = self.model(x)
- x = x.view(-1, 256)
- x = self.fc(x)
- return x
- class ClassHead(nn.Module):
- def __init__(self, inchannels=512, num_anchors=3):
- super(ClassHead, self).__init__()
- self.num_anchors = num_anchors
- self.conv1x1 = nn.Conv2d(
- inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0
- )
- def forward(self, x):
- out = self.conv1x1(x)
- out = out.permute(0, 2, 3, 1).contiguous()
- return out.view(out.shape[0], -1, 2)
- class BboxHead(nn.Module):
- def __init__(self, inchannels=512, num_anchors=3):
- super(BboxHead, self).__init__()
- self.conv1x1 = nn.Conv2d(
- inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0
- )
- def forward(self, x):
- out = self.conv1x1(x)
- out = out.permute(0, 2, 3, 1).contiguous()
- return out.view(out.shape[0], -1, 4)
- class LandmarkHead(nn.Module):
- def __init__(self, inchannels=512, num_anchors=3):
- super(LandmarkHead, self).__init__()
- self.conv1x1 = nn.Conv2d(
- inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0
- )
- def forward(self, x):
- out = self.conv1x1(x)
- out = out.permute(0, 2, 3, 1).contiguous()
- return out.view(out.shape[0], -1, 10)
- def make_class_head(fpn_num=3, inchannels=64, anchor_num=2):
- classhead = nn.ModuleList()
- for i in range(fpn_num):
- classhead.append(ClassHead(inchannels, anchor_num))
- return classhead
- def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2):
- bboxhead = nn.ModuleList()
- for i in range(fpn_num):
- bboxhead.append(BboxHead(inchannels, anchor_num))
- return bboxhead
- def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2):
- landmarkhead = nn.ModuleList()
- for i in range(fpn_num):
- landmarkhead.append(LandmarkHead(inchannels, anchor_num))
- return landmarkhead
|