| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- import torch
- from torch import nn as nn
- from torch.nn import functional as F
- from .arch_util import default_init_weights, make_layer, pixel_unshuffle
- class ResidualDenseBlock(nn.Module):
- """Residual Dense Block.
- Used in RRDB block in ESRGAN.
- Args:
- num_feat (int): Channel number of intermediate features.
- num_grow_ch (int): Channels for each growth.
- """
- def __init__(self, num_feat: int = 64, num_grow_ch: int = 32) -> None:
- super(ResidualDenseBlock, self).__init__()
- self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
- self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
- self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
- self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
- self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
- # initialization
- default_init_weights(
- [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1
- )
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- x1 = self.lrelu(self.conv1(x))
- x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
- x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
- x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
- x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
- # Empirically, we use 0.2 to scale the residual for better performance
- return x5 * 0.2 + x
- class RRDB(nn.Module):
- """Residual in Residual Dense Block.
- Used in RRDB-Net in ESRGAN.
- Args:
- num_feat (int): Channel number of intermediate features.
- num_grow_ch (int): Channels for each growth.
- """
- def __init__(self, num_feat: int, num_grow_ch: int = 32) -> None:
- super(RRDB, self).__init__()
- self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
- self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
- self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- out = self.rdb1(x)
- out = self.rdb2(out)
- out = self.rdb3(out)
- # Empirically, we use 0.2 to scale the residual for better performance
- return out * 0.2 + x
- class RRDBNet(nn.Module):
- """Networks consisting of Residual in Residual Dense Block, which is used
- in ESRGAN.
- ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
- We extend ESRGAN for scale x2 and scale x1.
- Note: This is one option for scale 1, scale 2 in RRDBNet.
- We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
- and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
- Args:
- num_in_ch (int): Channel number of inputs.
- num_out_ch (int): Channel number of outputs.
- num_feat (int): Channel number of intermediate features.
- Default: 64
- num_block (int): Block number in the trunk network. Defaults: 23
- num_grow_ch (int): Channels for each growth. Default: 32.
- """
- def __init__(
- self,
- num_in_ch: int,
- num_out_ch: int,
- scale: int = 4,
- num_feat: int = 64,
- num_block: int = 23,
- num_grow_ch: int = 32,
- ) -> None:
- super(RRDBNet, self).__init__()
- self.scale = scale
- if scale == 2:
- num_in_ch = num_in_ch * 4
- elif scale == 1:
- num_in_ch = num_in_ch * 16
- self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
- self.body = make_layer(
- RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch
- )
- self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
- # upsample
- self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
- self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
- self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
- self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- if self.scale == 2:
- feat = pixel_unshuffle(x, scale=2)
- elif self.scale == 1:
- feat = pixel_unshuffle(x, scale=4)
- else:
- feat = x
- feat = self.conv_first(feat)
- body_feat = self.conv_body(self.body(feat))
- feat = feat + body_feat
- # upsample
- feat = self.lrelu(
- self.conv_up1(F.interpolate(feat, scale_factor=2, mode="nearest"))
- )
- feat = self.lrelu(
- self.conv_up2(F.interpolate(feat, scale_factor=2, mode="nearest"))
- )
- out = self.conv_last(self.lrelu(self.conv_hr(feat)))
- return out
|