| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- import os
- import cv2
- import PIL.Image
- import torch
- from diffusers import AutoencoderKL
- from loguru import logger
- from sorawm.iopaint.schema import InpaintRequest, ModelType
- from .base import DiffusionInpaintModel
- from .helper.cpu_text_encoder import CPUTextEncoderWrapper
- from .original_sd_configs import get_config_files
- from .utils import (
- enable_low_mem,
- get_torch_dtype,
- handle_from_pretrained_exceptions,
- is_local_files_only,
- )
- class SDXL(DiffusionInpaintModel):
- name = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
- pad_mod = 8
- min_size = 512
- lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
- model_id_or_path = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
- def init_model(self, device: torch.device, **kwargs):
- from diffusers.pipelines import StableDiffusionXLInpaintPipeline
- use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
- if self.model_info.model_type == ModelType.DIFFUSERS_SDXL:
- num_in_channels = 4
- else:
- num_in_channels = 9
- if os.path.isfile(self.model_id_or_path):
- self.model = StableDiffusionXLInpaintPipeline.from_single_file(
- self.model_id_or_path,
- torch_dtype=torch_dtype,
- num_in_channels=num_in_channels,
- load_safety_checker=False,
- original_config_file=get_config_files()["xl"],
- )
- else:
- model_kwargs = {
- **kwargs.get("pipe_components", {}),
- "local_files_only": is_local_files_only(**kwargs),
- }
- if "vae" not in model_kwargs:
- vae = AutoencoderKL.from_pretrained(
- "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
- )
- model_kwargs["vae"] = vae
- self.model = handle_from_pretrained_exceptions(
- StableDiffusionXLInpaintPipeline.from_pretrained,
- pretrained_model_name_or_path=self.model_id_or_path,
- torch_dtype=torch_dtype,
- variant="fp16",
- **model_kwargs,
- )
- enable_low_mem(self.model, kwargs.get("low_mem", False))
- if kwargs.get("cpu_offload", False) and use_gpu:
- logger.info("Enable sequential cpu offload")
- self.model.enable_sequential_cpu_offload(gpu_id=0)
- else:
- self.model = self.model.to(device)
- if kwargs["sd_cpu_textencoder"]:
- logger.info("Run Stable Diffusion TextEncoder on CPU")
- self.model.text_encoder = CPUTextEncoderWrapper(
- self.model.text_encoder, torch_dtype
- )
- self.model.text_encoder_2 = CPUTextEncoderWrapper(
- self.model.text_encoder_2, torch_dtype
- )
- self.callback = kwargs.pop("callback", None)
- def forward(self, image, mask, config: InpaintRequest):
- """Input image and output image have same size
- image: [H, W, C] RGB
- mask: [H, W, 1] 255 means area to repaint
- return: BGR IMAGE
- """
- self.set_scheduler(config)
- img_h, img_w = image.shape[:2]
- output = self.model(
- image=PIL.Image.fromarray(image),
- prompt=config.prompt,
- negative_prompt=config.negative_prompt,
- mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
- num_inference_steps=config.sd_steps,
- strength=0.999 if config.sd_strength == 1.0 else config.sd_strength,
- guidance_scale=config.sd_guidance_scale,
- output_type="np",
- callback_on_step_end=self.callback,
- height=img_h,
- width=img_w,
- generator=torch.manual_seed(config.sd_seed),
- ).images[0]
- output = (output * 255).round().astype("uint8")
- output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
- return output
|