| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946 |
- import os
- import random
- import cv2
- import numpy as np
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.utils.checkpoint as checkpoint
- from sorawm.iopaint.helper import (
- download_model,
- get_cache_path_by_url,
- load_model,
- norm_img,
- )
- from sorawm.iopaint.schema import InpaintRequest
- from .base import InpaintModel
- from .utils import (
- Conv2dLayer,
- FullyConnectedLayer,
- MinibatchStdLayer,
- activation_funcs,
- bias_act,
- conv2d_resample,
- normalize_2nd_moment,
- set_seed,
- setup_filter,
- to_2tuple,
- upsample2d,
- )
- class ModulatedConv2d(nn.Module):
- def __init__(
- self,
- in_channels, # Number of input channels.
- out_channels, # Number of output channels.
- kernel_size, # Width and height of the convolution kernel.
- style_dim, # dimension of the style code
- demodulate=True, # perfrom demodulation
- up=1, # Integer upsampling factor.
- down=1, # Integer downsampling factor.
- resample_filter=[
- 1,
- 3,
- 3,
- 1,
- ], # Low-pass filter to apply when resampling activations.
- conv_clamp=None, # Clamp the output to +-X, None = disable clamping.
- ):
- super().__init__()
- self.demodulate = demodulate
- self.weight = torch.nn.Parameter(
- torch.randn([1, out_channels, in_channels, kernel_size, kernel_size])
- )
- self.out_channels = out_channels
- self.kernel_size = kernel_size
- self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2))
- self.padding = self.kernel_size // 2
- self.up = up
- self.down = down
- self.register_buffer("resample_filter", setup_filter(resample_filter))
- self.conv_clamp = conv_clamp
- self.affine = FullyConnectedLayer(style_dim, in_channels, bias_init=1)
- def forward(self, x, style):
- batch, in_channels, height, width = x.shape
- style = self.affine(style).view(batch, 1, in_channels, 1, 1)
- weight = self.weight * self.weight_gain * style
- if self.demodulate:
- decoefs = (weight.pow(2).sum(dim=[2, 3, 4]) + 1e-8).rsqrt()
- weight = weight * decoefs.view(batch, self.out_channels, 1, 1, 1)
- weight = weight.view(
- batch * self.out_channels, in_channels, self.kernel_size, self.kernel_size
- )
- x = x.view(1, batch * in_channels, height, width)
- x = conv2d_resample(
- x=x,
- w=weight,
- f=self.resample_filter,
- up=self.up,
- down=self.down,
- padding=self.padding,
- groups=batch,
- )
- out = x.view(batch, self.out_channels, *x.shape[2:])
- return out
- class StyleConv(torch.nn.Module):
- def __init__(
- self,
- in_channels, # Number of input channels.
- out_channels, # Number of output channels.
- style_dim, # Intermediate latent (W) dimensionality.
- resolution, # Resolution of this layer.
- kernel_size=3, # Convolution kernel size.
- up=1, # Integer upsampling factor.
- use_noise=False, # Enable noise input?
- activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
- resample_filter=[
- 1,
- 3,
- 3,
- 1,
- ], # Low-pass filter to apply when resampling activations.
- conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
- demodulate=True, # perform demodulation
- ):
- super().__init__()
- self.conv = ModulatedConv2d(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- style_dim=style_dim,
- demodulate=demodulate,
- up=up,
- resample_filter=resample_filter,
- conv_clamp=conv_clamp,
- )
- self.use_noise = use_noise
- self.resolution = resolution
- if use_noise:
- self.register_buffer("noise_const", torch.randn([resolution, resolution]))
- self.noise_strength = torch.nn.Parameter(torch.zeros([]))
- self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
- self.activation = activation
- self.act_gain = activation_funcs[activation].def_gain
- self.conv_clamp = conv_clamp
- def forward(self, x, style, noise_mode="random", gain=1):
- x = self.conv(x, style)
- assert noise_mode in ["random", "const", "none"]
- if self.use_noise:
- if noise_mode == "random":
- xh, xw = x.size()[-2:]
- noise = (
- torch.randn([x.shape[0], 1, xh, xw], device=x.device)
- * self.noise_strength
- )
- if noise_mode == "const":
- noise = self.noise_const * self.noise_strength
- x = x + noise
- act_gain = self.act_gain * gain
- act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
- out = bias_act(
- x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp
- )
- return out
- class ToRGB(torch.nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- style_dim,
- kernel_size=1,
- resample_filter=[1, 3, 3, 1],
- conv_clamp=None,
- demodulate=False,
- ):
- super().__init__()
- self.conv = ModulatedConv2d(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- style_dim=style_dim,
- demodulate=demodulate,
- resample_filter=resample_filter,
- conv_clamp=conv_clamp,
- )
- self.bias = torch.nn.Parameter(torch.zeros([out_channels]))
- self.register_buffer("resample_filter", setup_filter(resample_filter))
- self.conv_clamp = conv_clamp
- def forward(self, x, style, skip=None):
- x = self.conv(x, style)
- out = bias_act(x, self.bias, clamp=self.conv_clamp)
- if skip is not None:
- if skip.shape != out.shape:
- skip = upsample2d(skip, self.resample_filter)
- out = out + skip
- return out
- def get_style_code(a, b):
- return torch.cat([a, b], dim=1)
- class DecBlockFirst(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- activation,
- style_dim,
- use_noise,
- demodulate,
- img_channels,
- ):
- super().__init__()
- self.fc = FullyConnectedLayer(
- in_features=in_channels * 2,
- out_features=in_channels * 4**2,
- activation=activation,
- )
- self.conv = StyleConv(
- in_channels=in_channels,
- out_channels=out_channels,
- style_dim=style_dim,
- resolution=4,
- kernel_size=3,
- use_noise=use_noise,
- activation=activation,
- demodulate=demodulate,
- )
- self.toRGB = ToRGB(
- in_channels=out_channels,
- out_channels=img_channels,
- style_dim=style_dim,
- kernel_size=1,
- demodulate=False,
- )
- def forward(self, x, ws, gs, E_features, noise_mode="random"):
- x = self.fc(x).view(x.shape[0], -1, 4, 4)
- x = x + E_features[2]
- style = get_style_code(ws[:, 0], gs)
- x = self.conv(x, style, noise_mode=noise_mode)
- style = get_style_code(ws[:, 1], gs)
- img = self.toRGB(x, style, skip=None)
- return x, img
- class DecBlockFirstV2(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- activation,
- style_dim,
- use_noise,
- demodulate,
- img_channels,
- ):
- super().__init__()
- self.conv0 = Conv2dLayer(
- in_channels=in_channels,
- out_channels=in_channels,
- kernel_size=3,
- activation=activation,
- )
- self.conv1 = StyleConv(
- in_channels=in_channels,
- out_channels=out_channels,
- style_dim=style_dim,
- resolution=4,
- kernel_size=3,
- use_noise=use_noise,
- activation=activation,
- demodulate=demodulate,
- )
- self.toRGB = ToRGB(
- in_channels=out_channels,
- out_channels=img_channels,
- style_dim=style_dim,
- kernel_size=1,
- demodulate=False,
- )
- def forward(self, x, ws, gs, E_features, noise_mode="random"):
- # x = self.fc(x).view(x.shape[0], -1, 4, 4)
- x = self.conv0(x)
- x = x + E_features[2]
- style = get_style_code(ws[:, 0], gs)
- x = self.conv1(x, style, noise_mode=noise_mode)
- style = get_style_code(ws[:, 1], gs)
- img = self.toRGB(x, style, skip=None)
- return x, img
- class DecBlock(nn.Module):
- def __init__(
- self,
- res,
- in_channels,
- out_channels,
- activation,
- style_dim,
- use_noise,
- demodulate,
- img_channels,
- ): # res = 2, ..., resolution_log2
- super().__init__()
- self.res = res
- self.conv0 = StyleConv(
- in_channels=in_channels,
- out_channels=out_channels,
- style_dim=style_dim,
- resolution=2**res,
- kernel_size=3,
- up=2,
- use_noise=use_noise,
- activation=activation,
- demodulate=demodulate,
- )
- self.conv1 = StyleConv(
- in_channels=out_channels,
- out_channels=out_channels,
- style_dim=style_dim,
- resolution=2**res,
- kernel_size=3,
- use_noise=use_noise,
- activation=activation,
- demodulate=demodulate,
- )
- self.toRGB = ToRGB(
- in_channels=out_channels,
- out_channels=img_channels,
- style_dim=style_dim,
- kernel_size=1,
- demodulate=False,
- )
- def forward(self, x, img, ws, gs, E_features, noise_mode="random"):
- style = get_style_code(ws[:, self.res * 2 - 5], gs)
- x = self.conv0(x, style, noise_mode=noise_mode)
- x = x + E_features[self.res]
- style = get_style_code(ws[:, self.res * 2 - 4], gs)
- x = self.conv1(x, style, noise_mode=noise_mode)
- style = get_style_code(ws[:, self.res * 2 - 3], gs)
- img = self.toRGB(x, style, skip=img)
- return x, img
- class MappingNet(torch.nn.Module):
- def __init__(
- self,
- z_dim, # Input latent (Z) dimensionality, 0 = no latent.
- c_dim, # Conditioning label (C) dimensionality, 0 = no label.
- w_dim, # Intermediate latent (W) dimensionality.
- num_ws, # Number of intermediate latents to output, None = do not broadcast.
- num_layers=8, # Number of mapping layers.
- embed_features=None, # Label embedding dimensionality, None = same as w_dim.
- layer_features=None, # Number of intermediate features in the mapping layers, None = same as w_dim.
- activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
- lr_multiplier=0.01, # Learning rate multiplier for the mapping layers.
- w_avg_beta=0.995, # Decay for tracking the moving average of W during training, None = do not track.
- torch_dtype=torch.float32,
- ):
- super().__init__()
- self.z_dim = z_dim
- self.c_dim = c_dim
- self.w_dim = w_dim
- self.num_ws = num_ws
- self.num_layers = num_layers
- self.w_avg_beta = w_avg_beta
- self.torch_dtype = torch_dtype
- if embed_features is None:
- embed_features = w_dim
- if c_dim == 0:
- embed_features = 0
- if layer_features is None:
- layer_features = w_dim
- features_list = (
- [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim]
- )
- if c_dim > 0:
- self.embed = FullyConnectedLayer(c_dim, embed_features)
- for idx in range(num_layers):
- in_features = features_list[idx]
- out_features = features_list[idx + 1]
- layer = FullyConnectedLayer(
- in_features,
- out_features,
- activation=activation,
- lr_multiplier=lr_multiplier,
- )
- setattr(self, f"fc{idx}", layer)
- if num_ws is not None and w_avg_beta is not None:
- self.register_buffer("w_avg", torch.zeros([w_dim]))
- def forward(
- self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False
- ):
- # Embed, normalize, and concat inputs.
- x = None
- if self.z_dim > 0:
- x = normalize_2nd_moment(z)
- if self.c_dim > 0:
- y = normalize_2nd_moment(self.embed(c))
- x = torch.cat([x, y], dim=1) if x is not None else y
- # Main layers.
- for idx in range(self.num_layers):
- layer = getattr(self, f"fc{idx}")
- x = layer(x)
- # Update moving average of W.
- if self.w_avg_beta is not None and self.training and not skip_w_avg_update:
- self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta))
- # Broadcast.
- if self.num_ws is not None:
- x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
- # Apply truncation.
- if truncation_psi != 1:
- assert self.w_avg_beta is not None
- if self.num_ws is None or truncation_cutoff is None:
- x = self.w_avg.lerp(x, truncation_psi)
- else:
- x[:, :truncation_cutoff] = self.w_avg.lerp(
- x[:, :truncation_cutoff], truncation_psi
- )
- return x
- class DisFromRGB(nn.Module):
- def __init__(
- self, in_channels, out_channels, activation
- ): # res = 2, ..., resolution_log2
- super().__init__()
- self.conv = Conv2dLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=1,
- activation=activation,
- )
- def forward(self, x):
- return self.conv(x)
- class DisBlock(nn.Module):
- def __init__(
- self, in_channels, out_channels, activation
- ): # res = 2, ..., resolution_log2
- super().__init__()
- self.conv0 = Conv2dLayer(
- in_channels=in_channels,
- out_channels=in_channels,
- kernel_size=3,
- activation=activation,
- )
- self.conv1 = Conv2dLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=3,
- down=2,
- activation=activation,
- )
- self.skip = Conv2dLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=1,
- down=2,
- bias=False,
- )
- def forward(self, x):
- skip = self.skip(x, gain=np.sqrt(0.5))
- x = self.conv0(x)
- x = self.conv1(x, gain=np.sqrt(0.5))
- out = skip + x
- return out
- class Discriminator(torch.nn.Module):
- def __init__(
- self,
- c_dim, # Conditioning label (C) dimensionality.
- img_resolution, # Input resolution.
- img_channels, # Number of input color channels.
- channel_base=32768, # Overall multiplier for the number of channels.
- channel_max=512, # Maximum number of channels in any layer.
- channel_decay=1,
- cmap_dim=None, # Dimensionality of mapped conditioning label, None = default.
- activation="lrelu",
- mbstd_group_size=4, # Group size for the minibatch standard deviation layer, None = entire minibatch.
- mbstd_num_channels=1, # Number of features for the minibatch standard deviation layer, 0 = disable.
- ):
- super().__init__()
- self.c_dim = c_dim
- self.img_resolution = img_resolution
- self.img_channels = img_channels
- resolution_log2 = int(np.log2(img_resolution))
- assert img_resolution == 2**resolution_log2 and img_resolution >= 4
- self.resolution_log2 = resolution_log2
- def nf(stage):
- return np.clip(
- int(channel_base / 2 ** (stage * channel_decay)), 1, channel_max
- )
- if cmap_dim == None:
- cmap_dim = nf(2)
- if c_dim == 0:
- cmap_dim = 0
- self.cmap_dim = cmap_dim
- if c_dim > 0:
- self.mapping = MappingNet(
- z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None
- )
- Dis = [DisFromRGB(img_channels + 1, nf(resolution_log2), activation)]
- for res in range(resolution_log2, 2, -1):
- Dis.append(DisBlock(nf(res), nf(res - 1), activation))
- if mbstd_num_channels > 0:
- Dis.append(
- MinibatchStdLayer(
- group_size=mbstd_group_size, num_channels=mbstd_num_channels
- )
- )
- Dis.append(
- Conv2dLayer(
- nf(2) + mbstd_num_channels, nf(2), kernel_size=3, activation=activation
- )
- )
- self.Dis = nn.Sequential(*Dis)
- self.fc0 = FullyConnectedLayer(nf(2) * 4**2, nf(2), activation=activation)
- self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim)
- def forward(self, images_in, masks_in, c):
- x = torch.cat([masks_in - 0.5, images_in], dim=1)
- x = self.Dis(x)
- x = self.fc1(self.fc0(x.flatten(start_dim=1)))
- if self.c_dim > 0:
- cmap = self.mapping(None, c)
- if self.cmap_dim > 0:
- x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
- return x
- def nf(stage, channel_base=32768, channel_decay=1.0, channel_max=512):
- NF = {512: 64, 256: 128, 128: 256, 64: 512, 32: 512, 16: 512, 8: 512, 4: 512}
- return NF[2**stage]
- class Mlp(nn.Module):
- def __init__(
- self,
- in_features,
- hidden_features=None,
- out_features=None,
- act_layer=nn.GELU,
- drop=0.0,
- ):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = FullyConnectedLayer(
- in_features=in_features, out_features=hidden_features, activation="lrelu"
- )
- self.fc2 = FullyConnectedLayer(
- in_features=hidden_features, out_features=out_features
- )
- def forward(self, x):
- x = self.fc1(x)
- x = self.fc2(x)
- return x
- def window_partition(x, window_size):
- """
- Args:
- x: (B, H, W, C)
- window_size (int): window size
- Returns:
- windows: (num_windows*B, window_size, window_size, C)
- """
- B, H, W, C = x.shape
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
- windows = (
- x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
- )
- return windows
- def window_reverse(windows, window_size: int, H: int, W: int):
- """
- Args:
- windows: (num_windows*B, window_size, window_size, C)
- window_size (int): Window size
- H (int): Height of image
- W (int): Width of image
- Returns:
- x: (B, H, W, C)
- """
- B = int(windows.shape[0] / (H * W / window_size / window_size))
- # B = windows.shape[0] / (H * W / window_size / window_size)
- x = windows.view(
- B, H // window_size, W // window_size, window_size, window_size, -1
- )
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
- return x
- class Conv2dLayerPartial(nn.Module):
- def __init__(
- self,
- in_channels, # Number of input channels.
- out_channels, # Number of output channels.
- kernel_size, # Width and height of the convolution kernel.
- bias=True, # Apply additive bias before the activation function?
- activation="linear", # Activation function: 'relu', 'lrelu', etc.
- up=1, # Integer upsampling factor.
- down=1, # Integer downsampling factor.
- resample_filter=[
- 1,
- 3,
- 3,
- 1,
- ], # Low-pass filter to apply when resampling activations.
- conv_clamp=None, # Clamp the output to +-X, None = disable clamping.
- trainable=True, # Update the weights of this layer during training?
- ):
- super().__init__()
- self.conv = Conv2dLayer(
- in_channels,
- out_channels,
- kernel_size,
- bias,
- activation,
- up,
- down,
- resample_filter,
- conv_clamp,
- trainable,
- )
- self.weight_maskUpdater = torch.ones(1, 1, kernel_size, kernel_size)
- self.slide_winsize = kernel_size**2
- self.stride = down
- self.padding = kernel_size // 2 if kernel_size % 2 == 1 else 0
- def forward(self, x, mask=None):
- if mask is not None:
- with torch.no_grad():
- if self.weight_maskUpdater.type() != x.type():
- self.weight_maskUpdater = self.weight_maskUpdater.to(x)
- update_mask = F.conv2d(
- mask,
- self.weight_maskUpdater,
- bias=None,
- stride=self.stride,
- padding=self.padding,
- )
- mask_ratio = self.slide_winsize / (update_mask.to(torch.float32) + 1e-8)
- update_mask = torch.clamp(update_mask, 0, 1) # 0 or 1
- mask_ratio = torch.mul(mask_ratio, update_mask).to(x.dtype)
- x = self.conv(x)
- x = torch.mul(x, mask_ratio)
- return x, update_mask
- else:
- x = self.conv(x)
- return x, None
- class WindowAttention(nn.Module):
- r"""Window based multi-head self attention (W-MSA) module with relative position bias.
- It supports both of shifted and non-shifted window.
- Args:
- dim (int): Number of input channels.
- window_size (tuple[int]): The height and width of the window.
- num_heads (int): Number of attention heads.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
- attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
- """
- def __init__(
- self,
- dim,
- window_size,
- num_heads,
- down_ratio=1,
- qkv_bias=True,
- qk_scale=None,
- attn_drop=0.0,
- proj_drop=0.0,
- ):
- super().__init__()
- self.dim = dim
- self.window_size = window_size # Wh, Ww
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = qk_scale or head_dim**-0.5
- self.q = FullyConnectedLayer(in_features=dim, out_features=dim)
- self.k = FullyConnectedLayer(in_features=dim, out_features=dim)
- self.v = FullyConnectedLayer(in_features=dim, out_features=dim)
- self.proj = FullyConnectedLayer(in_features=dim, out_features=dim)
- self.softmax = nn.Softmax(dim=-1)
- def forward(self, x, mask_windows=None, mask=None):
- """
- Args:
- x: input features with shape of (num_windows*B, N, C)
- mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
- """
- B_, N, C = x.shape
- norm_x = F.normalize(x, p=2.0, dim=-1, eps=torch.finfo(x.dtype).eps)
- q = (
- self.q(norm_x)
- .reshape(B_, N, self.num_heads, C // self.num_heads)
- .permute(0, 2, 1, 3)
- )
- k = (
- self.k(norm_x)
- .view(B_, -1, self.num_heads, C // self.num_heads)
- .permute(0, 2, 3, 1)
- )
- v = (
- self.v(x)
- .view(B_, -1, self.num_heads, C // self.num_heads)
- .permute(0, 2, 1, 3)
- )
- attn = (q @ k) * self.scale
- if mask is not None:
- nW = mask.shape[0]
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
- 1
- ).unsqueeze(0)
- attn = attn.view(-1, self.num_heads, N, N)
- if mask_windows is not None:
- attn_mask_windows = mask_windows.squeeze(-1).unsqueeze(1).unsqueeze(1)
- attn = attn + attn_mask_windows.masked_fill(
- attn_mask_windows == 0, float(-100.0)
- ).masked_fill(attn_mask_windows == 1, float(0.0))
- with torch.no_grad():
- mask_windows = torch.clamp(
- torch.sum(mask_windows, dim=1, keepdim=True), 0, 1
- ).repeat(1, N, 1)
- attn = self.softmax(attn)
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
- x = self.proj(x)
- return x, mask_windows
- class SwinTransformerBlock(nn.Module):
- r"""Swin Transformer Block.
- Args:
- dim (int): Number of input channels.
- input_resolution (tuple[int]): Input resulotion.
- num_heads (int): Number of attention heads.
- window_size (int): Window size.
- shift_size (int): Shift size for SW-MSA.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
- drop (float, optional): Dropout rate. Default: 0.0
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- """
- def __init__(
- self,
- dim,
- input_resolution,
- num_heads,
- down_ratio=1,
- window_size=7,
- shift_size=0,
- mlp_ratio=4.0,
- qkv_bias=True,
- qk_scale=None,
- drop=0.0,
- attn_drop=0.0,
- drop_path=0.0,
- act_layer=nn.GELU,
- norm_layer=nn.LayerNorm,
- ):
- super().__init__()
- self.dim = dim
- self.input_resolution = input_resolution
- self.num_heads = num_heads
- self.window_size = window_size
- self.shift_size = shift_size
- self.mlp_ratio = mlp_ratio
- if min(self.input_resolution) <= self.window_size:
- # if window size is larger than input resolution, we don't partition windows
- self.shift_size = 0
- self.window_size = min(self.input_resolution)
- assert (
- 0 <= self.shift_size < self.window_size
- ), "shift_size must in 0-window_size"
- if self.shift_size > 0:
- down_ratio = 1
- self.attn = WindowAttention(
- dim,
- window_size=to_2tuple(self.window_size),
- num_heads=num_heads,
- down_ratio=down_ratio,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- attn_drop=attn_drop,
- proj_drop=drop,
- )
- self.fuse = FullyConnectedLayer(
- in_features=dim * 2, out_features=dim, activation="lrelu"
- )
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(
- in_features=dim,
- hidden_features=mlp_hidden_dim,
- act_layer=act_layer,
- drop=drop,
- )
- if self.shift_size > 0:
- attn_mask = self.calculate_mask(self.input_resolution)
- else:
- attn_mask = None
- self.register_buffer("attn_mask", attn_mask)
- def calculate_mask(self, x_size):
- # calculate attention mask for SW-MSA
- H, W = x_size
- img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
- h_slices = (
- slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None),
- )
- w_slices = (
- slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None),
- )
- cnt = 0
- for h in h_slices:
- for w in w_slices:
- img_mask[:, h, w, :] = cnt
- cnt += 1
- mask_windows = window_partition(
- img_mask, self.window_size
- ) # nW, window_size, window_size, 1
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
- attn_mask == 0, float(0.0)
- )
- return attn_mask
- def forward(self, x, x_size, mask=None):
- # H, W = self.input_resolution
- H, W = x_size
- B, L, C = x.shape
- # assert L == H * W, "input feature has wrong size"
- shortcut = x
- x = x.view(B, H, W, C)
- if mask is not None:
- mask = mask.view(B, H, W, 1)
- # cyclic shift
- if self.shift_size > 0:
- shifted_x = torch.roll(
- x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
- )
- if mask is not None:
- shifted_mask = torch.roll(
- mask, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
- )
- else:
- shifted_x = x
- if mask is not None:
- shifted_mask = mask
- # partition windows
- x_windows = window_partition(
- shifted_x, self.window_size
- ) # nW*B, window_size, window_size, C
- x_windows = x_windows.view(
- -1, self.window_size * self.window_size, C
- ) # nW*B, window_size*window_size, C
- if mask is not None:
- mask_windows = window_partition(shifted_mask, self.window_size)
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size, 1)
- else:
- mask_windows = None
- # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
- if self.input_resolution == x_size:
- attn_windows, mask_windows = self.attn(
- x_windows, mask_windows, mask=self.attn_mask
- ) # nW*B, window_size*window_size, C
- else:
- attn_windows, mask_windows = self.attn(
- x_windows,
- mask_windows,
- mask=self.calculate_mask(x_size).to(x.dtype).to(x.device),
- ) # nW*B, window_size*window_size, C
- # merge windows
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
- shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
- if mask is not None:
- mask_windows = mask_windows.view(-1, self.window_size, self.window_size, 1)
- shifted_mask = window_reverse(mask_windows, self.window_size, H, W)
- # reverse cyclic shift
- if self.shift_size > 0:
- x = torch.roll(
- shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
- )
- if mask is not None:
- mask = torch.roll(
- shifted_mask, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
- )
- else:
- x = shifted_x
- if mask is not None:
- mask = shifted_mask
- x = x.view(B, H * W, C)
- if mask is not None:
- mask = mask.view(B, H * W, 1)
- # FFN
- x = self.fuse(torch.cat([shortcut, x], dim=-1))
- x = self.mlp(x)
- return x, mask
- class PatchMerging(nn.Module):
- def __init__(self, in_channels, out_channels, down=2):
- super().__init__()
- self.conv = Conv2dLayerPartial(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=3,
- activation="lrelu",
- down=down,
- )
- self.down = down
- def forward(self, x, x_size, mask=None):
- x = token2feature(x, x_size)
- if mask is not None:
- mask = token2feature(mask, x_size)
- x, mask = self.conv(x, mask)
- if self.down != 1:
- ratio = 1 / self.down
- x_size = (int(x_size[0] * ratio), int(x_size[1] * ratio))
- x = feature2token(x)
- if mask is not None:
- mask = feature2token(mask)
- return x, x_size, mask
- class PatchUpsampling(nn.Module):
- def __init__(self, in_channels, out_channels, up=2):
- super().__init__()
- self.conv = Conv2dLayerPartial(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=3,
- activation="lrelu",
- up=up,
- )
- self.up = up
- def forward(self, x, x_size, mask=None):
- x = token2feature(x, x_size)
- if mask is not None:
- mask = token2feature(mask, x_size)
- x, mask = self.conv(x, mask)
- if self.up != 1:
- x_size = (int(x_size[0] * self.up), int(x_size[1] * self.up))
- x = feature2token(x)
- if mask is not None:
- mask = feature2token(mask)
- return x, x_size, mask
- class BasicLayer(nn.Module):
- """A basic Swin Transformer layer for one stage.
- Args:
- dim (int): Number of input channels.
- input_resolution (tuple[int]): Input resolution.
- depth (int): Number of blocks.
- num_heads (int): Number of attention heads.
- window_size (int): Local window size.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
- drop (float, optional): Dropout rate. Default: 0.0
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
- """
- def __init__(
- self,
- dim,
- input_resolution,
- depth,
- num_heads,
- window_size,
- down_ratio=1,
- mlp_ratio=2.0,
- qkv_bias=True,
- qk_scale=None,
- drop=0.0,
- attn_drop=0.0,
- drop_path=0.0,
- norm_layer=nn.LayerNorm,
- downsample=None,
- use_checkpoint=False,
- ):
- super().__init__()
- self.dim = dim
- self.input_resolution = input_resolution
- self.depth = depth
- self.use_checkpoint = use_checkpoint
- # patch merging layer
- if downsample is not None:
- # self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
- self.downsample = downsample
- else:
- self.downsample = None
- # build blocks
- self.blocks = nn.ModuleList(
- [
- SwinTransformerBlock(
- dim=dim,
- input_resolution=input_resolution,
- num_heads=num_heads,
- down_ratio=down_ratio,
- window_size=window_size,
- shift_size=0 if (i % 2 == 0) else window_size // 2,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- qk_scale=qk_scale,
- drop=drop,
- attn_drop=attn_drop,
- drop_path=drop_path[i]
- if isinstance(drop_path, list)
- else drop_path,
- norm_layer=norm_layer,
- )
- for i in range(depth)
- ]
- )
- self.conv = Conv2dLayerPartial(
- in_channels=dim, out_channels=dim, kernel_size=3, activation="lrelu"
- )
- def forward(self, x, x_size, mask=None):
- if self.downsample is not None:
- x, x_size, mask = self.downsample(x, x_size, mask)
- identity = x
- for blk in self.blocks:
- if self.use_checkpoint:
- x, mask = checkpoint.checkpoint(blk, x, x_size, mask)
- else:
- x, mask = blk(x, x_size, mask)
- if mask is not None:
- mask = token2feature(mask, x_size)
- x, mask = self.conv(token2feature(x, x_size), mask)
- x = feature2token(x) + identity
- if mask is not None:
- mask = feature2token(mask)
- return x, x_size, mask
- class ToToken(nn.Module):
- def __init__(self, in_channels=3, dim=128, kernel_size=5, stride=1):
- super().__init__()
- self.proj = Conv2dLayerPartial(
- in_channels=in_channels,
- out_channels=dim,
- kernel_size=kernel_size,
- activation="lrelu",
- )
- def forward(self, x, mask):
- x, mask = self.proj(x, mask)
- return x, mask
- class EncFromRGB(nn.Module):
- def __init__(
- self, in_channels, out_channels, activation
- ): # res = 2, ..., resolution_log2
- super().__init__()
- self.conv0 = Conv2dLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=1,
- activation=activation,
- )
- self.conv1 = Conv2dLayer(
- in_channels=out_channels,
- out_channels=out_channels,
- kernel_size=3,
- activation=activation,
- )
- def forward(self, x):
- x = self.conv0(x)
- x = self.conv1(x)
- return x
- class ConvBlockDown(nn.Module):
- def __init__(
- self, in_channels, out_channels, activation
- ): # res = 2, ..., resolution_log
- super().__init__()
- self.conv0 = Conv2dLayer(
- in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=3,
- activation=activation,
- down=2,
- )
- self.conv1 = Conv2dLayer(
- in_channels=out_channels,
- out_channels=out_channels,
- kernel_size=3,
- activation=activation,
- )
- def forward(self, x):
- x = self.conv0(x)
- x = self.conv1(x)
- return x
- def token2feature(x, x_size):
- B, N, C = x.shape
- h, w = x_size
- x = x.permute(0, 2, 1).reshape(B, C, h, w)
- return x
- def feature2token(x):
- B, C, H, W = x.shape
- x = x.view(B, C, -1).transpose(1, 2)
- return x
- class Encoder(nn.Module):
- def __init__(
- self,
- res_log2,
- img_channels,
- activation,
- patch_size=5,
- channels=16,
- drop_path_rate=0.1,
- ):
- super().__init__()
- self.resolution = []
- for idx, i in enumerate(range(res_log2, 3, -1)): # from input size to 16x16
- res = 2**i
- self.resolution.append(res)
- if i == res_log2:
- block = EncFromRGB(img_channels * 2 + 1, nf(i), activation)
- else:
- block = ConvBlockDown(nf(i + 1), nf(i), activation)
- setattr(self, "EncConv_Block_%dx%d" % (res, res), block)
- def forward(self, x):
- out = {}
- for res in self.resolution:
- res_log2 = int(np.log2(res))
- x = getattr(self, "EncConv_Block_%dx%d" % (res, res))(x)
- out[res_log2] = x
- return out
- class ToStyle(nn.Module):
- def __init__(self, in_channels, out_channels, activation, drop_rate):
- super().__init__()
- self.conv = nn.Sequential(
- Conv2dLayer(
- in_channels=in_channels,
- out_channels=in_channels,
- kernel_size=3,
- activation=activation,
- down=2,
- ),
- Conv2dLayer(
- in_channels=in_channels,
- out_channels=in_channels,
- kernel_size=3,
- activation=activation,
- down=2,
- ),
- Conv2dLayer(
- in_channels=in_channels,
- out_channels=in_channels,
- kernel_size=3,
- activation=activation,
- down=2,
- ),
- )
- self.pool = nn.AdaptiveAvgPool2d(1)
- self.fc = FullyConnectedLayer(
- in_features=in_channels, out_features=out_channels, activation=activation
- )
- # self.dropout = nn.Dropout(drop_rate)
- def forward(self, x):
- x = self.conv(x)
- x = self.pool(x)
- x = self.fc(x.flatten(start_dim=1))
- # x = self.dropout(x)
- return x
- class DecBlockFirstV2(nn.Module):
- def __init__(
- self,
- res,
- in_channels,
- out_channels,
- activation,
- style_dim,
- use_noise,
- demodulate,
- img_channels,
- ):
- super().__init__()
- self.res = res
- self.conv0 = Conv2dLayer(
- in_channels=in_channels,
- out_channels=in_channels,
- kernel_size=3,
- activation=activation,
- )
- self.conv1 = StyleConv(
- in_channels=in_channels,
- out_channels=out_channels,
- style_dim=style_dim,
- resolution=2**res,
- kernel_size=3,
- use_noise=use_noise,
- activation=activation,
- demodulate=demodulate,
- )
- self.toRGB = ToRGB(
- in_channels=out_channels,
- out_channels=img_channels,
- style_dim=style_dim,
- kernel_size=1,
- demodulate=False,
- )
- def forward(self, x, ws, gs, E_features, noise_mode="random"):
- # x = self.fc(x).view(x.shape[0], -1, 4, 4)
- x = self.conv0(x)
- x = x + E_features[self.res]
- style = get_style_code(ws[:, 0], gs)
- x = self.conv1(x, style, noise_mode=noise_mode)
- style = get_style_code(ws[:, 1], gs)
- img = self.toRGB(x, style, skip=None)
- return x, img
- class DecBlock(nn.Module):
- def __init__(
- self,
- res,
- in_channels,
- out_channels,
- activation,
- style_dim,
- use_noise,
- demodulate,
- img_channels,
- ): # res = 4, ..., resolution_log2
- super().__init__()
- self.res = res
- self.conv0 = StyleConv(
- in_channels=in_channels,
- out_channels=out_channels,
- style_dim=style_dim,
- resolution=2**res,
- kernel_size=3,
- up=2,
- use_noise=use_noise,
- activation=activation,
- demodulate=demodulate,
- )
- self.conv1 = StyleConv(
- in_channels=out_channels,
- out_channels=out_channels,
- style_dim=style_dim,
- resolution=2**res,
- kernel_size=3,
- use_noise=use_noise,
- activation=activation,
- demodulate=demodulate,
- )
- self.toRGB = ToRGB(
- in_channels=out_channels,
- out_channels=img_channels,
- style_dim=style_dim,
- kernel_size=1,
- demodulate=False,
- )
- def forward(self, x, img, ws, gs, E_features, noise_mode="random"):
- style = get_style_code(ws[:, self.res * 2 - 9], gs)
- x = self.conv0(x, style, noise_mode=noise_mode)
- x = x + E_features[self.res]
- style = get_style_code(ws[:, self.res * 2 - 8], gs)
- x = self.conv1(x, style, noise_mode=noise_mode)
- style = get_style_code(ws[:, self.res * 2 - 7], gs)
- img = self.toRGB(x, style, skip=img)
- return x, img
- class Decoder(nn.Module):
- def __init__(
- self, res_log2, activation, style_dim, use_noise, demodulate, img_channels
- ):
- super().__init__()
- self.Dec_16x16 = DecBlockFirstV2(
- 4, nf(4), nf(4), activation, style_dim, use_noise, demodulate, img_channels
- )
- for res in range(5, res_log2 + 1):
- setattr(
- self,
- "Dec_%dx%d" % (2**res, 2**res),
- DecBlock(
- res,
- nf(res - 1),
- nf(res),
- activation,
- style_dim,
- use_noise,
- demodulate,
- img_channels,
- ),
- )
- self.res_log2 = res_log2
- def forward(self, x, ws, gs, E_features, noise_mode="random"):
- x, img = self.Dec_16x16(x, ws, gs, E_features, noise_mode=noise_mode)
- for res in range(5, self.res_log2 + 1):
- block = getattr(self, "Dec_%dx%d" % (2**res, 2**res))
- x, img = block(x, img, ws, gs, E_features, noise_mode=noise_mode)
- return img
- class DecStyleBlock(nn.Module):
- def __init__(
- self,
- res,
- in_channels,
- out_channels,
- activation,
- style_dim,
- use_noise,
- demodulate,
- img_channels,
- ):
- super().__init__()
- self.res = res
- self.conv0 = StyleConv(
- in_channels=in_channels,
- out_channels=out_channels,
- style_dim=style_dim,
- resolution=2**res,
- kernel_size=3,
- up=2,
- use_noise=use_noise,
- activation=activation,
- demodulate=demodulate,
- )
- self.conv1 = StyleConv(
- in_channels=out_channels,
- out_channels=out_channels,
- style_dim=style_dim,
- resolution=2**res,
- kernel_size=3,
- use_noise=use_noise,
- activation=activation,
- demodulate=demodulate,
- )
- self.toRGB = ToRGB(
- in_channels=out_channels,
- out_channels=img_channels,
- style_dim=style_dim,
- kernel_size=1,
- demodulate=False,
- )
- def forward(self, x, img, style, skip, noise_mode="random"):
- x = self.conv0(x, style, noise_mode=noise_mode)
- x = x + skip
- x = self.conv1(x, style, noise_mode=noise_mode)
- img = self.toRGB(x, style, skip=img)
- return x, img
- class FirstStage(nn.Module):
- def __init__(
- self,
- img_channels,
- img_resolution=256,
- dim=180,
- w_dim=512,
- use_noise=False,
- demodulate=True,
- activation="lrelu",
- ):
- super().__init__()
- res = 64
- self.conv_first = Conv2dLayerPartial(
- in_channels=img_channels + 1,
- out_channels=dim,
- kernel_size=3,
- activation=activation,
- )
- self.enc_conv = nn.ModuleList()
- down_time = int(np.log2(img_resolution // res))
- # 根据图片尺寸构建 swim transformer 的层数
- for i in range(down_time): # from input size to 64
- self.enc_conv.append(
- Conv2dLayerPartial(
- in_channels=dim,
- out_channels=dim,
- kernel_size=3,
- down=2,
- activation=activation,
- )
- )
- # from 64 -> 16 -> 64
- depths = [2, 3, 4, 3, 2]
- ratios = [1, 1 / 2, 1 / 2, 2, 2]
- num_heads = 6
- window_sizes = [8, 16, 16, 16, 8]
- drop_path_rate = 0.1
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
- self.tran = nn.ModuleList()
- for i, depth in enumerate(depths):
- res = int(res * ratios[i])
- if ratios[i] < 1:
- merge = PatchMerging(dim, dim, down=int(1 / ratios[i]))
- elif ratios[i] > 1:
- merge = PatchUpsampling(dim, dim, up=ratios[i])
- else:
- merge = None
- self.tran.append(
- BasicLayer(
- dim=dim,
- input_resolution=[res, res],
- depth=depth,
- num_heads=num_heads,
- window_size=window_sizes[i],
- drop_path=dpr[sum(depths[:i]) : sum(depths[: i + 1])],
- downsample=merge,
- )
- )
- # global style
- down_conv = []
- for i in range(int(np.log2(16))):
- down_conv.append(
- Conv2dLayer(
- in_channels=dim,
- out_channels=dim,
- kernel_size=3,
- down=2,
- activation=activation,
- )
- )
- down_conv.append(nn.AdaptiveAvgPool2d((1, 1)))
- self.down_conv = nn.Sequential(*down_conv)
- self.to_style = FullyConnectedLayer(
- in_features=dim, out_features=dim * 2, activation=activation
- )
- self.ws_style = FullyConnectedLayer(
- in_features=w_dim, out_features=dim, activation=activation
- )
- self.to_square = FullyConnectedLayer(
- in_features=dim, out_features=16 * 16, activation=activation
- )
- style_dim = dim * 3
- self.dec_conv = nn.ModuleList()
- for i in range(down_time): # from 64 to input size
- res = res * 2
- self.dec_conv.append(
- DecStyleBlock(
- res,
- dim,
- dim,
- activation,
- style_dim,
- use_noise,
- demodulate,
- img_channels,
- )
- )
- def forward(self, images_in, masks_in, ws, noise_mode="random"):
- x = torch.cat([masks_in - 0.5, images_in * masks_in], dim=1)
- skips = []
- x, mask = self.conv_first(x, masks_in) # input size
- skips.append(x)
- for i, block in enumerate(self.enc_conv): # input size to 64
- x, mask = block(x, mask)
- if i != len(self.enc_conv) - 1:
- skips.append(x)
- x_size = x.size()[-2:]
- x = feature2token(x)
- mask = feature2token(mask)
- mid = len(self.tran) // 2
- for i, block in enumerate(self.tran): # 64 to 16
- if i < mid:
- x, x_size, mask = block(x, x_size, mask)
- skips.append(x)
- elif i > mid:
- x, x_size, mask = block(x, x_size, None)
- x = x + skips[mid - i]
- else:
- x, x_size, mask = block(x, x_size, None)
- mul_map = torch.ones_like(x) * 0.5
- mul_map = F.dropout(mul_map, training=True)
- ws = self.ws_style(ws[:, -1])
- add_n = self.to_square(ws).unsqueeze(1)
- add_n = (
- F.interpolate(
- add_n, size=x.size(1), mode="linear", align_corners=False
- )
- .squeeze(1)
- .unsqueeze(-1)
- )
- x = x * mul_map + add_n * (1 - mul_map)
- gs = self.to_style(
- self.down_conv(token2feature(x, x_size)).flatten(start_dim=1)
- )
- style = torch.cat([gs, ws], dim=1)
- x = token2feature(x, x_size).contiguous()
- img = None
- for i, block in enumerate(self.dec_conv):
- x, img = block(
- x, img, style, skips[len(self.dec_conv) - i - 1], noise_mode=noise_mode
- )
- # ensemble
- img = img * (1 - masks_in) + images_in * masks_in
- return img
- class SynthesisNet(nn.Module):
- def __init__(
- self,
- w_dim, # Intermediate latent (W) dimensionality.
- img_resolution, # Output image resolution.
- img_channels=3, # Number of color channels.
- channel_base=32768, # Overall multiplier for the number of channels.
- channel_decay=1.0,
- channel_max=512, # Maximum number of channels in any layer.
- activation="lrelu", # Activation function: 'relu', 'lrelu', etc.
- drop_rate=0.5,
- use_noise=False,
- demodulate=True,
- ):
- super().__init__()
- resolution_log2 = int(np.log2(img_resolution))
- assert img_resolution == 2**resolution_log2 and img_resolution >= 4
- self.num_layers = resolution_log2 * 2 - 3 * 2
- self.img_resolution = img_resolution
- self.resolution_log2 = resolution_log2
- # first stage
- self.first_stage = FirstStage(
- img_channels,
- img_resolution=img_resolution,
- w_dim=w_dim,
- use_noise=False,
- demodulate=demodulate,
- )
- # second stage
- self.enc = Encoder(
- resolution_log2, img_channels, activation, patch_size=5, channels=16
- )
- self.to_square = FullyConnectedLayer(
- in_features=w_dim, out_features=16 * 16, activation=activation
- )
- self.to_style = ToStyle(
- in_channels=nf(4),
- out_channels=nf(2) * 2,
- activation=activation,
- drop_rate=drop_rate,
- )
- style_dim = w_dim + nf(2) * 2
- self.dec = Decoder(
- resolution_log2, activation, style_dim, use_noise, demodulate, img_channels
- )
- def forward(self, images_in, masks_in, ws, noise_mode="random", return_stg1=False):
- out_stg1 = self.first_stage(images_in, masks_in, ws, noise_mode=noise_mode)
- # encoder
- x = images_in * masks_in + out_stg1 * (1 - masks_in)
- x = torch.cat([masks_in - 0.5, x, images_in * masks_in], dim=1)
- E_features = self.enc(x)
- fea_16 = E_features[4]
- mul_map = torch.ones_like(fea_16) * 0.5
- mul_map = F.dropout(mul_map, training=True)
- add_n = self.to_square(ws[:, 0]).view(-1, 16, 16).unsqueeze(1)
- add_n = F.interpolate(
- add_n, size=fea_16.size()[-2:], mode="bilinear", align_corners=False
- )
- fea_16 = fea_16 * mul_map + add_n * (1 - mul_map)
- E_features[4] = fea_16
- # style
- gs = self.to_style(fea_16)
- # decoder
- img = self.dec(fea_16, ws, gs, E_features, noise_mode=noise_mode)
- # ensemble
- img = img * (1 - masks_in) + images_in * masks_in
- if not return_stg1:
- return img
- else:
- return img, out_stg1
- class Generator(nn.Module):
- def __init__(
- self,
- z_dim, # Input latent (Z) dimensionality, 0 = no latent.
- c_dim, # Conditioning label (C) dimensionality, 0 = no label.
- w_dim, # Intermediate latent (W) dimensionality.
- img_resolution, # resolution of generated image
- img_channels, # Number of input color channels.
- synthesis_kwargs={}, # Arguments for SynthesisNetwork.
- mapping_kwargs={}, # Arguments for MappingNetwork.
- ):
- super().__init__()
- self.z_dim = z_dim
- self.c_dim = c_dim
- self.w_dim = w_dim
- self.img_resolution = img_resolution
- self.img_channels = img_channels
- self.synthesis = SynthesisNet(
- w_dim=w_dim,
- img_resolution=img_resolution,
- img_channels=img_channels,
- **synthesis_kwargs,
- )
- self.mapping = MappingNet(
- z_dim=z_dim,
- c_dim=c_dim,
- w_dim=w_dim,
- num_ws=self.synthesis.num_layers,
- **mapping_kwargs,
- )
- def forward(
- self,
- images_in,
- masks_in,
- z,
- c,
- truncation_psi=1,
- truncation_cutoff=None,
- skip_w_avg_update=False,
- noise_mode="none",
- return_stg1=False,
- ):
- ws = self.mapping(
- z,
- c,
- truncation_psi=truncation_psi,
- truncation_cutoff=truncation_cutoff,
- skip_w_avg_update=skip_w_avg_update,
- )
- img = self.synthesis(images_in, masks_in, ws, noise_mode=noise_mode)
- return img
- class Discriminator(torch.nn.Module):
- def __init__(
- self,
- c_dim, # Conditioning label (C) dimensionality.
- img_resolution, # Input resolution.
- img_channels, # Number of input color channels.
- channel_base=32768, # Overall multiplier for the number of channels.
- channel_max=512, # Maximum number of channels in any layer.
- channel_decay=1,
- cmap_dim=None, # Dimensionality of mapped conditioning label, None = default.
- activation="lrelu",
- mbstd_group_size=4, # Group size for the minibatch standard deviation layer, None = entire minibatch.
- mbstd_num_channels=1, # Number of features for the minibatch standard deviation layer, 0 = disable.
- ):
- super().__init__()
- self.c_dim = c_dim
- self.img_resolution = img_resolution
- self.img_channels = img_channels
- resolution_log2 = int(np.log2(img_resolution))
- assert img_resolution == 2**resolution_log2 and img_resolution >= 4
- self.resolution_log2 = resolution_log2
- if cmap_dim == None:
- cmap_dim = nf(2)
- if c_dim == 0:
- cmap_dim = 0
- self.cmap_dim = cmap_dim
- if c_dim > 0:
- self.mapping = MappingNet(
- z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None
- )
- Dis = [DisFromRGB(img_channels + 1, nf(resolution_log2), activation)]
- for res in range(resolution_log2, 2, -1):
- Dis.append(DisBlock(nf(res), nf(res - 1), activation))
- if mbstd_num_channels > 0:
- Dis.append(
- MinibatchStdLayer(
- group_size=mbstd_group_size, num_channels=mbstd_num_channels
- )
- )
- Dis.append(
- Conv2dLayer(
- nf(2) + mbstd_num_channels, nf(2), kernel_size=3, activation=activation
- )
- )
- self.Dis = nn.Sequential(*Dis)
- self.fc0 = FullyConnectedLayer(nf(2) * 4**2, nf(2), activation=activation)
- self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim)
- # for 64x64
- Dis_stg1 = [DisFromRGB(img_channels + 1, nf(resolution_log2) // 2, activation)]
- for res in range(resolution_log2, 2, -1):
- Dis_stg1.append(DisBlock(nf(res) // 2, nf(res - 1) // 2, activation))
- if mbstd_num_channels > 0:
- Dis_stg1.append(
- MinibatchStdLayer(
- group_size=mbstd_group_size, num_channels=mbstd_num_channels
- )
- )
- Dis_stg1.append(
- Conv2dLayer(
- nf(2) // 2 + mbstd_num_channels,
- nf(2) // 2,
- kernel_size=3,
- activation=activation,
- )
- )
- self.Dis_stg1 = nn.Sequential(*Dis_stg1)
- self.fc0_stg1 = FullyConnectedLayer(
- nf(2) // 2 * 4**2, nf(2) // 2, activation=activation
- )
- self.fc1_stg1 = FullyConnectedLayer(
- nf(2) // 2, 1 if cmap_dim == 0 else cmap_dim
- )
- def forward(self, images_in, masks_in, images_stg1, c):
- x = self.Dis(torch.cat([masks_in - 0.5, images_in], dim=1))
- x = self.fc1(self.fc0(x.flatten(start_dim=1)))
- x_stg1 = self.Dis_stg1(torch.cat([masks_in - 0.5, images_stg1], dim=1))
- x_stg1 = self.fc1_stg1(self.fc0_stg1(x_stg1.flatten(start_dim=1)))
- if self.c_dim > 0:
- cmap = self.mapping(None, c)
- if self.cmap_dim > 0:
- x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
- x_stg1 = (x_stg1 * cmap).sum(dim=1, keepdim=True) * (
- 1 / np.sqrt(self.cmap_dim)
- )
- return x, x_stg1
- MAT_MODEL_URL = os.environ.get(
- "MAT_MODEL_URL",
- "https://github.com/Sanster/models/releases/download/add_mat/Places_512_FullData_G.pth",
- )
- MAT_MODEL_MD5 = os.environ.get("MAT_MODEL_MD5", "8ca927835fa3f5e21d65ffcb165377ed")
- class MAT(InpaintModel):
- name = "mat"
- min_size = 512
- pad_mod = 512
- pad_to_square = True
- is_erase_model = True
- def init_model(self, device, **kwargs):
- seed = 240 # pick up a random number
- set_seed(seed)
- fp16 = not kwargs.get("no_half", False)
- use_gpu = "cuda" in str(device) and torch.cuda.is_available()
- self.torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
- G = Generator(
- z_dim=512,
- c_dim=0,
- w_dim=512,
- img_resolution=512,
- img_channels=3,
- mapping_kwargs={"torch_dtype": self.torch_dtype},
- ).to(self.torch_dtype)
- # fmt: off
- self.model = load_model(G, MAT_MODEL_URL, device, MAT_MODEL_MD5)
- self.z = torch.from_numpy(np.random.randn(1, G.z_dim)).to(self.torch_dtype).to(device)
- self.label = torch.zeros([1, self.model.c_dim], device=device).to(self.torch_dtype)
- # fmt: on
- @staticmethod
- def download():
- download_model(MAT_MODEL_URL, MAT_MODEL_MD5)
- @staticmethod
- def is_downloaded() -> bool:
- return os.path.exists(get_cache_path_by_url(MAT_MODEL_URL))
- def forward(self, image, mask, config: InpaintRequest):
- """Input images and output images have same size
- images: [H, W, C] RGB
- masks: [H, W] mask area == 255
- return: BGR IMAGE
- """
- image = norm_img(image) # [0, 1]
- image = image * 2 - 1 # [0, 1] -> [-1, 1]
- mask = (mask > 127) * 255
- mask = 255 - mask
- mask = norm_img(mask)
- image = (
- torch.from_numpy(image).unsqueeze(0).to(self.torch_dtype).to(self.device)
- )
- mask = torch.from_numpy(mask).unsqueeze(0).to(self.torch_dtype).to(self.device)
- output = self.model(
- image, mask, self.z, self.label, truncation_psi=1, noise_mode="none"
- )
- output = (
- (output.permute(0, 2, 3, 1) * 127.5 + 127.5)
- .round()
- .clamp(0, 255)
- .to(torch.uint8)
- )
- output = output[0].cpu().numpy()
- cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
- return cur_res
|