| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753 |
- # https://github.com/TencentARC/BrushNet
- import inspect
- from typing import Any, Callable, Dict, List, Optional, Tuple, Union
- import numpy as np
- import PIL.Image
- import torch
- import torch.nn.functional as F
- from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
- from diffusers.loaders import (
- FromSingleFileMixin,
- IPAdapterMixin,
- StableDiffusionXLLoraLoaderMixin,
- TextualInversionLoaderMixin,
- )
- from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
- from diffusers.models.attention_processor import (
- AttnProcessor2_0,
- LoRAAttnProcessor2_0,
- LoRAXFormersAttnProcessor,
- XFormersAttnProcessor,
- )
- from diffusers.models.lora import adjust_lora_scale_text_encoder
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
- from diffusers.pipelines.stable_diffusion_xl.pipeline_output import (
- StableDiffusionXLPipelineOutput,
- )
- from diffusers.schedulers import KarrasDiffusionSchedulers
- from diffusers.utils import (
- USE_PEFT_BACKEND,
- deprecate,
- logging,
- replace_example_docstring,
- scale_lora_layers,
- unscale_lora_layers,
- )
- from diffusers.utils.import_utils import is_invisible_watermark_available
- from diffusers.utils.torch_utils import (
- is_compiled_module,
- is_torch_version,
- randn_tensor,
- )
- from transformers import (
- CLIPImageProcessor,
- CLIPTextModel,
- CLIPTextModelWithProjection,
- CLIPTokenizer,
- CLIPVisionModelWithProjection,
- )
- from .brushnet import BrushNetModel
- if is_invisible_watermark_available():
- from diffusers.pipelines.stable_diffusion_xl.watermark import (
- StableDiffusionXLWatermarker,
- )
- # from .multibrushnet import MultiBrushNetModel
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
- EXAMPLE_DOC_STRING = """
- Examples:
- ```py
- >>> # !pip install opencv-python transformers accelerate
- >>> from diffusers import StableDiffusionXLBrushNetPipeline, BrushNetModel, AutoencoderKL
- >>> from diffusers.utils import load_image
- >>> import numpy as np
- >>> import torch
- >>> import cv2
- >>> from PIL import Image
- >>> prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
- >>> negative_prompt = "low quality, bad quality, sketches"
- >>> # download an image
- >>> image = load_image(
- ... "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_brushnet/hf-logo.png"
- ... )
- >>> # initialize the models and pipeline
- >>> brushnet_conditioning_scale = 0.5 # recommended for good generalization
- >>> brushnet = BrushNetModel.from_pretrained(
- ... "diffusers/brushnet-canny-sdxl-1.0", torch_dtype=torch.float16
- ... )
- >>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
- >>> pipe = StableDiffusionXLBrushNetPipeline.from_pretrained(
- ... "stabilityai/stable-diffusion-xl-base-1.0", brushnet=brushnet, vae=vae, torch_dtype=torch.float16
- ... )
- >>> pipe.enable_model_cpu_offload()
- >>> # get canny image
- >>> image = np.array(image)
- >>> image = cv2.Canny(image, 100, 200)
- >>> image = image[:, :, None]
- >>> image = np.concatenate([image, image, image], axis=2)
- >>> canny_image = Image.fromarray(image)
- >>> # generate image
- >>> image = pipe(
- ... prompt, brushnet_conditioning_scale=brushnet_conditioning_scale, image=canny_image
- ... ).images[0]
- ```
- """
- class StableDiffusionXLBrushNetPipeline(
- DiffusionPipeline,
- StableDiffusionMixin,
- TextualInversionLoaderMixin,
- StableDiffusionXLLoraLoaderMixin,
- IPAdapterMixin,
- FromSingleFileMixin,
- ):
- r"""
- Pipeline for text-to-image generation using Stable Diffusion XL with BrushNet guidance.
- This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
- implemented for all pipelines (downloading, saving, running on a particular device, etc.).
- The pipeline also inherits the following loading methods:
- - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
- - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
- - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
- - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
- - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
- Args:
- vae ([`AutoencoderKL`]):
- Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
- text_encoder ([`~transformers.CLIPTextModel`]):
- Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
- text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
- Second frozen text-encoder
- ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
- tokenizer ([`~transformers.CLIPTokenizer`]):
- A `CLIPTokenizer` to tokenize text.
- tokenizer_2 ([`~transformers.CLIPTokenizer`]):
- A `CLIPTokenizer` to tokenize text.
- unet ([`UNet2DConditionModel`]):
- A `UNet2DConditionModel` to denoise the encoded image latents.
- brushnet ([`BrushNetModel`] or `List[BrushNetModel]`):
- Provides additional conditioning to the `unet` during the denoising process. If you set multiple
- BrushNets as a list, the outputs from each BrushNet are added together to create one combined
- additional conditioning.
- scheduler ([`SchedulerMixin`]):
- A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
- [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
- force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
- Whether the negative prompt embeddings should always be set to 0. Also see the config of
- `stabilityai/stable-diffusion-xl-base-1-0`.
- add_watermarker (`bool`, *optional*):
- Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
- watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
- watermarker is used.
- """
- # leave brushnet out on purpose because it iterates with unet
- model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
- _optional_components = [
- "tokenizer",
- "tokenizer_2",
- "text_encoder",
- "text_encoder_2",
- "feature_extractor",
- "image_encoder",
- ]
- _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
- def __init__(
- self,
- vae: AutoencoderKL,
- text_encoder: CLIPTextModel,
- text_encoder_2: CLIPTextModelWithProjection,
- tokenizer: CLIPTokenizer,
- tokenizer_2: CLIPTokenizer,
- unet: UNet2DConditionModel,
- brushnet: Union[
- BrushNetModel, List[BrushNetModel], Tuple[BrushNetModel]
- ], # MultiBrushNetModel],
- scheduler: KarrasDiffusionSchedulers,
- force_zeros_for_empty_prompt: bool = True,
- add_watermarker: Optional[bool] = None,
- feature_extractor: CLIPImageProcessor = None,
- image_encoder: CLIPVisionModelWithProjection = None,
- ):
- super().__init__()
- # if isinstance(brushnet, (list, tuple)):
- # brushnet = MultiBrushNetModel(brushnet)
- self.register_modules(
- vae=vae,
- text_encoder=text_encoder,
- text_encoder_2=text_encoder_2,
- tokenizer=tokenizer,
- tokenizer_2=tokenizer_2,
- unet=unet,
- brushnet=brushnet,
- scheduler=scheduler,
- feature_extractor=feature_extractor,
- image_encoder=image_encoder,
- )
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
- self.image_processor = VaeImageProcessor(
- vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
- )
- # self.control_image_processor = VaeImageProcessor(
- # vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
- # )
- add_watermarker = (
- add_watermarker
- if add_watermarker is not None
- else is_invisible_watermark_available()
- )
- if add_watermarker:
- self.watermark = StableDiffusionXLWatermarker()
- else:
- self.watermark = None
- self.register_to_config(
- force_zeros_for_empty_prompt=force_zeros_for_empty_prompt
- )
- # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
- def encode_prompt(
- self,
- prompt: str,
- prompt_2: Optional[str] = None,
- device: Optional[torch.device] = None,
- num_images_per_prompt: int = 1,
- do_classifier_free_guidance: bool = True,
- negative_prompt: Optional[str] = None,
- negative_prompt_2: Optional[str] = None,
- prompt_embeds: Optional[torch.FloatTensor] = None,
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
- lora_scale: Optional[float] = None,
- clip_skip: Optional[int] = None,
- ):
- r"""
- Encodes the prompt into text encoder hidden states.
- Args:
- prompt (`str` or `List[str]`, *optional*):
- prompt to be encoded
- prompt_2 (`str` or `List[str]`, *optional*):
- The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
- used in both text-encoders
- device: (`torch.device`):
- torch device
- num_images_per_prompt (`int`):
- number of images that should be generated per prompt
- do_classifier_free_guidance (`bool`):
- whether to use classifier free guidance or not
- negative_prompt (`str` or `List[str]`, *optional*):
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
- less than `1`).
- negative_prompt_2 (`str` or `List[str]`, *optional*):
- The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
- `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
- prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
- provided, text embeddings will be generated from `prompt` input argument.
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
- weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
- argument.
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
- If not provided, pooled text embeddings will be generated from `prompt` input argument.
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
- weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
- input argument.
- lora_scale (`float`, *optional*):
- A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
- clip_skip (`int`, *optional*):
- Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
- the output of the pre-final layer will be used for computing the prompt embeddings.
- """
- device = device or self._execution_device
- # set lora scale so that monkey patched LoRA
- # function of text encoder can correctly access it
- if lora_scale is not None and isinstance(
- self, StableDiffusionXLLoraLoaderMixin
- ):
- self._lora_scale = lora_scale
- # dynamically adjust the LoRA scale
- if self.text_encoder is not None:
- if not USE_PEFT_BACKEND:
- adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
- else:
- scale_lora_layers(self.text_encoder, lora_scale)
- if self.text_encoder_2 is not None:
- if not USE_PEFT_BACKEND:
- adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
- else:
- scale_lora_layers(self.text_encoder_2, lora_scale)
- prompt = [prompt] if isinstance(prompt, str) else prompt
- if prompt is not None:
- batch_size = len(prompt)
- else:
- batch_size = prompt_embeds.shape[0]
- # Define tokenizers and text encoders
- tokenizers = (
- [self.tokenizer, self.tokenizer_2]
- if self.tokenizer is not None
- else [self.tokenizer_2]
- )
- text_encoders = (
- [self.text_encoder, self.text_encoder_2]
- if self.text_encoder is not None
- else [self.text_encoder_2]
- )
- if prompt_embeds is None:
- prompt_2 = prompt_2 or prompt
- prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
- # textual inversion: process multi-vector tokens if necessary
- prompt_embeds_list = []
- prompts = [prompt, prompt_2]
- for prompt, tokenizer, text_encoder in zip(
- prompts, tokenizers, text_encoders
- ):
- if isinstance(self, TextualInversionLoaderMixin):
- prompt = self.maybe_convert_prompt(prompt, tokenizer)
- text_inputs = tokenizer(
- prompt,
- padding="max_length",
- max_length=tokenizer.model_max_length,
- truncation=True,
- return_tensors="pt",
- )
- text_input_ids = text_inputs.input_ids
- untruncated_ids = tokenizer(
- prompt, padding="longest", return_tensors="pt"
- ).input_ids
- if untruncated_ids.shape[-1] >= text_input_ids.shape[
- -1
- ] and not torch.equal(text_input_ids, untruncated_ids):
- removed_text = tokenizer.batch_decode(
- untruncated_ids[:, tokenizer.model_max_length - 1 : -1]
- )
- logger.warning(
- "The following part of your input was truncated because CLIP can only handle sequences up to"
- f" {tokenizer.model_max_length} tokens: {removed_text}"
- )
- prompt_embeds = text_encoder(
- text_input_ids.to(device), output_hidden_states=True
- )
- # We are only ALWAYS interested in the pooled output of the final text encoder
- pooled_prompt_embeds = prompt_embeds[0]
- if clip_skip is None:
- prompt_embeds = prompt_embeds.hidden_states[-2]
- else:
- # "2" because SDXL always indexes from the penultimate layer.
- prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
- prompt_embeds_list.append(prompt_embeds)
- prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
- # get unconditional embeddings for classifier free guidance
- zero_out_negative_prompt = (
- negative_prompt is None and self.config.force_zeros_for_empty_prompt
- )
- if (
- do_classifier_free_guidance
- and negative_prompt_embeds is None
- and zero_out_negative_prompt
- ):
- negative_prompt_embeds = torch.zeros_like(prompt_embeds)
- negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
- elif do_classifier_free_guidance and negative_prompt_embeds is None:
- negative_prompt = negative_prompt or ""
- negative_prompt_2 = negative_prompt_2 or negative_prompt
- # normalize str to list
- negative_prompt = (
- batch_size * [negative_prompt]
- if isinstance(negative_prompt, str)
- else negative_prompt
- )
- negative_prompt_2 = (
- batch_size * [negative_prompt_2]
- if isinstance(negative_prompt_2, str)
- else negative_prompt_2
- )
- uncond_tokens: List[str]
- if prompt is not None and type(prompt) is not type(negative_prompt):
- raise TypeError(
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
- f" {type(prompt)}."
- )
- elif batch_size != len(negative_prompt):
- raise ValueError(
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
- " the batch size of `prompt`."
- )
- else:
- uncond_tokens = [negative_prompt, negative_prompt_2]
- negative_prompt_embeds_list = []
- for negative_prompt, tokenizer, text_encoder in zip(
- uncond_tokens, tokenizers, text_encoders
- ):
- if isinstance(self, TextualInversionLoaderMixin):
- negative_prompt = self.maybe_convert_prompt(
- negative_prompt, tokenizer
- )
- max_length = prompt_embeds.shape[1]
- uncond_input = tokenizer(
- negative_prompt,
- padding="max_length",
- max_length=max_length,
- truncation=True,
- return_tensors="pt",
- )
- negative_prompt_embeds = text_encoder(
- uncond_input.input_ids.to(device),
- output_hidden_states=True,
- )
- # We are only ALWAYS interested in the pooled output of the final text encoder
- negative_pooled_prompt_embeds = negative_prompt_embeds[0]
- negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
- negative_prompt_embeds_list.append(negative_prompt_embeds)
- negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
- if self.text_encoder_2 is not None:
- prompt_embeds = prompt_embeds.to(
- dtype=self.text_encoder_2.dtype, device=device
- )
- else:
- prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
- bs_embed, seq_len, _ = prompt_embeds.shape
- # duplicate text embeddings for each generation per prompt, using mps friendly method
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
- prompt_embeds = prompt_embeds.view(
- bs_embed * num_images_per_prompt, seq_len, -1
- )
- if do_classifier_free_guidance:
- # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
- seq_len = negative_prompt_embeds.shape[1]
- if self.text_encoder_2 is not None:
- negative_prompt_embeds = negative_prompt_embeds.to(
- dtype=self.text_encoder_2.dtype, device=device
- )
- else:
- negative_prompt_embeds = negative_prompt_embeds.to(
- dtype=self.unet.dtype, device=device
- )
- negative_prompt_embeds = negative_prompt_embeds.repeat(
- 1, num_images_per_prompt, 1
- )
- negative_prompt_embeds = negative_prompt_embeds.view(
- batch_size * num_images_per_prompt, seq_len, -1
- )
- pooled_prompt_embeds = pooled_prompt_embeds.repeat(
- 1, num_images_per_prompt
- ).view(bs_embed * num_images_per_prompt, -1)
- if do_classifier_free_guidance:
- negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(
- 1, num_images_per_prompt
- ).view(bs_embed * num_images_per_prompt, -1)
- if self.text_encoder is not None:
- if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
- # Retrieve the original scale by scaling back the LoRA layers
- unscale_lora_layers(self.text_encoder, lora_scale)
- if self.text_encoder_2 is not None:
- if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
- # Retrieve the original scale by scaling back the LoRA layers
- unscale_lora_layers(self.text_encoder_2, lora_scale)
- return (
- prompt_embeds,
- negative_prompt_embeds,
- pooled_prompt_embeds,
- negative_pooled_prompt_embeds,
- )
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
- def encode_image(
- self, image, device, num_images_per_prompt, output_hidden_states=None
- ):
- dtype = next(self.image_encoder.parameters()).dtype
- if not isinstance(image, torch.Tensor):
- image = self.feature_extractor(image, return_tensors="pt").pixel_values
- image = image.to(device=device, dtype=dtype)
- if output_hidden_states:
- image_enc_hidden_states = self.image_encoder(
- image, output_hidden_states=True
- ).hidden_states[-2]
- image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(
- num_images_per_prompt, dim=0
- )
- uncond_image_enc_hidden_states = self.image_encoder(
- torch.zeros_like(image), output_hidden_states=True
- ).hidden_states[-2]
- uncond_image_enc_hidden_states = (
- uncond_image_enc_hidden_states.repeat_interleave(
- num_images_per_prompt, dim=0
- )
- )
- return image_enc_hidden_states, uncond_image_enc_hidden_states
- else:
- image_embeds = self.image_encoder(image).image_embeds
- image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
- uncond_image_embeds = torch.zeros_like(image_embeds)
- return image_embeds, uncond_image_embeds
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
- def prepare_ip_adapter_image_embeds(
- self,
- ip_adapter_image,
- ip_adapter_image_embeds,
- device,
- num_images_per_prompt,
- do_classifier_free_guidance,
- ):
- if ip_adapter_image_embeds is None:
- if not isinstance(ip_adapter_image, list):
- ip_adapter_image = [ip_adapter_image]
- if len(ip_adapter_image) != len(
- self.unet.encoder_hid_proj.image_projection_layers
- ):
- raise ValueError(
- f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
- )
- image_embeds = []
- for single_ip_adapter_image, image_proj_layer in zip(
- ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
- ):
- output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
- single_image_embeds, single_negative_image_embeds = self.encode_image(
- single_ip_adapter_image, device, 1, output_hidden_state
- )
- single_image_embeds = torch.stack(
- [single_image_embeds] * num_images_per_prompt, dim=0
- )
- single_negative_image_embeds = torch.stack(
- [single_negative_image_embeds] * num_images_per_prompt, dim=0
- )
- if do_classifier_free_guidance:
- single_image_embeds = torch.cat(
- [single_negative_image_embeds, single_image_embeds]
- )
- single_image_embeds = single_image_embeds.to(device)
- image_embeds.append(single_image_embeds)
- else:
- repeat_dims = [1]
- image_embeds = []
- for single_image_embeds in ip_adapter_image_embeds:
- if do_classifier_free_guidance:
- (
- single_negative_image_embeds,
- single_image_embeds,
- ) = single_image_embeds.chunk(2)
- single_image_embeds = single_image_embeds.repeat(
- num_images_per_prompt,
- *(repeat_dims * len(single_image_embeds.shape[1:])),
- )
- single_negative_image_embeds = single_negative_image_embeds.repeat(
- num_images_per_prompt,
- *(repeat_dims * len(single_negative_image_embeds.shape[1:])),
- )
- single_image_embeds = torch.cat(
- [single_negative_image_embeds, single_image_embeds]
- )
- else:
- single_image_embeds = single_image_embeds.repeat(
- num_images_per_prompt,
- *(repeat_dims * len(single_image_embeds.shape[1:])),
- )
- image_embeds.append(single_image_embeds)
- return image_embeds
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
- def prepare_extra_step_kwargs(self, generator, eta):
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
- # and should be between [0, 1]
- accepts_eta = "eta" in set(
- inspect.signature(self.scheduler.step).parameters.keys()
- )
- extra_step_kwargs = {}
- if accepts_eta:
- extra_step_kwargs["eta"] = eta
- # check if the scheduler accepts generator
- accepts_generator = "generator" in set(
- inspect.signature(self.scheduler.step).parameters.keys()
- )
- if accepts_generator:
- extra_step_kwargs["generator"] = generator
- return extra_step_kwargs
- def check_inputs(
- self,
- prompt,
- prompt_2,
- image,
- mask,
- callback_steps,
- negative_prompt=None,
- negative_prompt_2=None,
- prompt_embeds=None,
- negative_prompt_embeds=None,
- pooled_prompt_embeds=None,
- ip_adapter_image=None,
- ip_adapter_image_embeds=None,
- negative_pooled_prompt_embeds=None,
- brushnet_conditioning_scale=1.0,
- control_guidance_start=0.0,
- control_guidance_end=1.0,
- callback_on_step_end_tensor_inputs=None,
- ):
- if callback_steps is not None and (
- not isinstance(callback_steps, int) or callback_steps <= 0
- ):
- raise ValueError(
- f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
- f" {type(callback_steps)}."
- )
- if callback_on_step_end_tensor_inputs is not None and not all(
- k in self._callback_tensor_inputs
- for k in callback_on_step_end_tensor_inputs
- ):
- raise ValueError(
- f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
- )
- if prompt is not None and prompt_embeds is not None:
- raise ValueError(
- f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
- " only forward one of the two."
- )
- elif prompt_2 is not None and prompt_embeds is not None:
- raise ValueError(
- f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
- " only forward one of the two."
- )
- elif prompt is None and prompt_embeds is None:
- raise ValueError(
- "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
- )
- elif prompt is not None and (
- not isinstance(prompt, str) and not isinstance(prompt, list)
- ):
- raise ValueError(
- f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
- )
- elif prompt_2 is not None and (
- not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
- ):
- raise ValueError(
- f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
- )
- if negative_prompt is not None and negative_prompt_embeds is not None:
- raise ValueError(
- f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
- )
- elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
- raise ValueError(
- f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
- )
- if prompt_embeds is not None and negative_prompt_embeds is not None:
- if prompt_embeds.shape != negative_prompt_embeds.shape:
- raise ValueError(
- "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
- f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
- f" {negative_prompt_embeds.shape}."
- )
- if prompt_embeds is not None and pooled_prompt_embeds is None:
- raise ValueError(
- "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
- )
- if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
- raise ValueError(
- "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
- )
- # `prompt` needs more sophisticated handling when there are multiple
- # conditionings.
- # if isinstance(self.brushnet, MultiBrushNetModel):
- # if isinstance(prompt, list):
- # logger.warning(
- # f"You have {len(self.brushnet.nets)} BrushNets and you have passed {len(prompt)}"
- # " prompts. The conditionings will be fixed across the prompts."
- # )
- # Check `image`
- is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
- self.brushnet, torch._dynamo.eval_frame.OptimizedModule
- )
- if (
- isinstance(self.brushnet, BrushNetModel)
- or is_compiled
- and isinstance(self.brushnet._orig_mod, BrushNetModel)
- ):
- self.check_image(image, mask, prompt, prompt_embeds)
- # elif (
- # isinstance(self.brushnet, MultiBrushNetModel)
- # or is_compiled
- # and isinstance(self.brushnet._orig_mod, MultiBrushNetModel)
- # ):
- # if not isinstance(image, list):
- # raise TypeError("For multiple brushnets: `image` must be type `list`")
- # # When `image` is a nested list:
- # # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
- # elif any(isinstance(i, list) for i in image):
- # raise ValueError("A single batch of multiple conditionings are supported at the moment.")
- # elif len(image) != len(self.brushnet.nets):
- # raise ValueError(
- # f"For multiple brushnets: `image` must have the same length as the number of brushnets, but got {len(image)} images and {len(self.brushnet.nets)} BrushNets."
- # )
- # for image_ in image:
- # self.check_image(image_, prompt, prompt_embeds)
- else:
- assert False
- # Check `brushnet_conditioning_scale`
- if (
- isinstance(self.brushnet, BrushNetModel)
- or is_compiled
- and isinstance(self.brushnet._orig_mod, BrushNetModel)
- ):
- if not isinstance(brushnet_conditioning_scale, float):
- raise TypeError(
- "For single brushnet: `brushnet_conditioning_scale` must be type `float`."
- )
- # elif (
- # isinstance(self.brushnet, MultiBrushNetModel)
- # or is_compiled
- # and isinstance(self.brushnet._orig_mod, MultiBrushNetModel)
- # ):
- # if isinstance(brushnet_conditioning_scale, list):
- # if any(isinstance(i, list) for i in brushnet_conditioning_scale):
- # raise ValueError("A single batch of multiple conditionings are supported at the moment.")
- # elif isinstance(brushnet_conditioning_scale, list) and len(brushnet_conditioning_scale) != len(
- # self.brushnet.nets
- # ):
- # raise ValueError(
- # "For multiple brushnets: When `brushnet_conditioning_scale` is specified as `list`, it must have"
- # " the same length as the number of brushnets"
- # )
- else:
- assert False
- if not isinstance(control_guidance_start, (tuple, list)):
- control_guidance_start = [control_guidance_start]
- if not isinstance(control_guidance_end, (tuple, list)):
- control_guidance_end = [control_guidance_end]
- if len(control_guidance_start) != len(control_guidance_end):
- raise ValueError(
- f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
- )
- # if isinstance(self.brushnet, MultiBrushNetModel):
- # if len(control_guidance_start) != len(self.brushnet.nets):
- # raise ValueError(
- # f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.brushnet.nets)} brushnets available. Make sure to provide {len(self.brushnet.nets)}."
- # )
- for start, end in zip(control_guidance_start, control_guidance_end):
- if start >= end:
- raise ValueError(
- f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
- )
- if start < 0.0:
- raise ValueError(
- f"control guidance start: {start} can't be smaller than 0."
- )
- if end > 1.0:
- raise ValueError(
- f"control guidance end: {end} can't be larger than 1.0."
- )
- if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
- raise ValueError(
- "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
- )
- if ip_adapter_image_embeds is not None:
- if not isinstance(ip_adapter_image_embeds, list):
- raise ValueError(
- f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
- )
- elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
- raise ValueError(
- f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
- )
- # Copied from diffusers.pipelines.brushnet.pipeline_brushnet.StableDiffusionBrushNetPipeline.check_image
- def check_image(self, image, mask, prompt, prompt_embeds):
- image_is_pil = isinstance(image, PIL.Image.Image)
- image_is_tensor = isinstance(image, torch.Tensor)
- image_is_np = isinstance(image, np.ndarray)
- image_is_pil_list = isinstance(image, list) and isinstance(
- image[0], PIL.Image.Image
- )
- image_is_tensor_list = isinstance(image, list) and isinstance(
- image[0], torch.Tensor
- )
- image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
- if (
- not image_is_pil
- and not image_is_tensor
- and not image_is_np
- and not image_is_pil_list
- and not image_is_tensor_list
- and not image_is_np_list
- ):
- raise TypeError(
- f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
- )
- mask_is_pil = isinstance(mask, PIL.Image.Image)
- mask_is_tensor = isinstance(mask, torch.Tensor)
- mask_is_np = isinstance(mask, np.ndarray)
- mask_is_pil_list = isinstance(mask, list) and isinstance(
- mask[0], PIL.Image.Image
- )
- mask_is_tensor_list = isinstance(mask, list) and isinstance(
- mask[0], torch.Tensor
- )
- mask_is_np_list = isinstance(mask, list) and isinstance(mask[0], np.ndarray)
- if (
- not mask_is_pil
- and not mask_is_tensor
- and not mask_is_np
- and not mask_is_pil_list
- and not mask_is_tensor_list
- and not mask_is_np_list
- ):
- raise TypeError(
- f"mask must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(mask)}"
- )
- if image_is_pil:
- image_batch_size = 1
- else:
- image_batch_size = len(image)
- if prompt is not None and isinstance(prompt, str):
- prompt_batch_size = 1
- elif prompt is not None and isinstance(prompt, list):
- prompt_batch_size = len(prompt)
- elif prompt_embeds is not None:
- prompt_batch_size = prompt_embeds.shape[0]
- if image_batch_size != 1 and image_batch_size != prompt_batch_size:
- raise ValueError(
- f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
- )
- # Copied from diffusers.pipelines.brushnet.pipeline_brushnet.StableDiffusionBrushNetPipeline.prepare_image
- def prepare_image(
- self,
- image,
- width,
- height,
- batch_size,
- num_images_per_prompt,
- device,
- dtype,
- do_classifier_free_guidance=False,
- guess_mode=False,
- ):
- image = self.image_processor.preprocess(image, height=height, width=width).to(
- dtype=torch.float32
- )
- image_batch_size = image.shape[0]
- if image_batch_size == 1:
- repeat_by = batch_size
- else:
- # image batch size is the same as prompt batch size
- repeat_by = num_images_per_prompt
- image = image.repeat_interleave(repeat_by, dim=0)
- image = image.to(device=device, dtype=dtype)
- if do_classifier_free_guidance and not guess_mode:
- image = torch.cat([image] * 2)
- return image
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
- def prepare_latents(
- self,
- batch_size,
- num_channels_latents,
- height,
- width,
- dtype,
- device,
- generator,
- latents=None,
- ):
- shape = (
- batch_size,
- num_channels_latents,
- height // self.vae_scale_factor,
- width // self.vae_scale_factor,
- )
- if isinstance(generator, list) and len(generator) != batch_size:
- raise ValueError(
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
- )
- if latents is None:
- noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
- else:
- noise = latents.to(device)
- # scale the initial noise by the standard deviation required by the scheduler
- latents = noise * self.scheduler.init_noise_sigma
- return latents, noise
- # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
- def _get_add_time_ids(
- self,
- original_size,
- crops_coords_top_left,
- target_size,
- dtype,
- text_encoder_projection_dim=None,
- ):
- add_time_ids = list(original_size + crops_coords_top_left + target_size)
- passed_add_embed_dim = (
- self.unet.config.addition_time_embed_dim * len(add_time_ids)
- + text_encoder_projection_dim
- )
- expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
- if expected_add_embed_dim != passed_add_embed_dim:
- raise ValueError(
- f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
- )
- add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
- return add_time_ids
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
- def upcast_vae(self):
- dtype = self.vae.dtype
- self.vae.to(dtype=torch.float32)
- use_torch_2_0_or_xformers = isinstance(
- self.vae.decoder.mid_block.attentions[0].processor,
- (
- AttnProcessor2_0,
- XFormersAttnProcessor,
- LoRAXFormersAttnProcessor,
- LoRAAttnProcessor2_0,
- ),
- )
- # if xformers or torch_2_0 is used attention block does not need
- # to be in float32 which can save lots of memory
- if use_torch_2_0_or_xformers:
- self.vae.post_quant_conv.to(dtype)
- self.vae.decoder.conv_in.to(dtype)
- self.vae.decoder.mid_block.to(dtype)
- # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
- def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
- """
- See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
- Args:
- timesteps (`torch.Tensor`):
- generate embedding vectors at these timesteps
- embedding_dim (`int`, *optional*, defaults to 512):
- dimension of the embeddings to generate
- dtype:
- data type of the generated embeddings
- Returns:
- `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
- """
- assert len(w.shape) == 1
- w = w * 1000.0
- half_dim = embedding_dim // 2
- emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
- emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
- emb = w.to(dtype)[:, None] * emb[None, :]
- emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
- if embedding_dim % 2 == 1: # zero pad
- emb = torch.nn.functional.pad(emb, (0, 1))
- assert emb.shape == (w.shape[0], embedding_dim)
- return emb
- @property
- def guidance_scale(self):
- return self._guidance_scale
- @property
- def clip_skip(self):
- return self._clip_skip
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
- # corresponds to doing no classifier free guidance.
- @property
- def do_classifier_free_guidance(self):
- return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
- @property
- def cross_attention_kwargs(self):
- return self._cross_attention_kwargs
- @property
- def denoising_end(self):
- return self._denoising_end
- @property
- def num_timesteps(self):
- return self._num_timesteps
- @torch.no_grad()
- @replace_example_docstring(EXAMPLE_DOC_STRING)
- def __call__(
- self,
- prompt: Union[str, List[str]] = None,
- prompt_2: Optional[Union[str, List[str]]] = None,
- image: PipelineImageInput = None,
- mask: PipelineImageInput = None,
- height: Optional[int] = None,
- width: Optional[int] = None,
- num_inference_steps: int = 50,
- denoising_end: Optional[float] = None,
- guidance_scale: float = 5.0,
- negative_prompt: Optional[Union[str, List[str]]] = None,
- negative_prompt_2: Optional[Union[str, List[str]]] = None,
- num_images_per_prompt: Optional[int] = 1,
- eta: float = 0.0,
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
- latents: Optional[torch.FloatTensor] = None,
- prompt_embeds: Optional[torch.FloatTensor] = None,
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
- ip_adapter_image: Optional[PipelineImageInput] = None,
- ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
- output_type: Optional[str] = "pil",
- return_dict: bool = True,
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
- brushnet_conditioning_scale: Union[float, List[float]] = 1.0,
- guess_mode: bool = False,
- control_guidance_start: Union[float, List[float]] = 0.0,
- control_guidance_end: Union[float, List[float]] = 1.0,
- original_size: Tuple[int, int] = None,
- crops_coords_top_left: Tuple[int, int] = (0, 0),
- target_size: Tuple[int, int] = None,
- negative_original_size: Optional[Tuple[int, int]] = None,
- negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
- negative_target_size: Optional[Tuple[int, int]] = None,
- clip_skip: Optional[int] = None,
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
- **kwargs,
- ):
- r"""
- The call function to the pipeline for generation.
- Args:
- prompt (`str` or `List[str]`, *optional*):
- The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
- prompt_2 (`str` or `List[str]`, *optional*):
- The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
- used in both text-encoders.
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
- `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
- The BrushNet input condition to provide guidance to the `unet` for generation. If the type is
- specified as `torch.FloatTensor`, it is passed to BrushNet as is. `PIL.Image.Image` can also be
- accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
- and/or width are passed, `image` is resized accordingly. If multiple BrushNets are specified in
- `init`, images must be passed as a list such that each element of the list can be correctly batched for
- input to a single BrushNet.
- height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
- The height in pixels of the generated image. Anything below 512 pixels won't work well for
- [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
- and checkpoints that are not specifically fine-tuned on low resolutions.
- width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
- The width in pixels of the generated image. Anything below 512 pixels won't work well for
- [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
- and checkpoints that are not specifically fine-tuned on low resolutions.
- num_inference_steps (`int`, *optional*, defaults to 50):
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
- expense of slower inference.
- denoising_end (`float`, *optional*):
- When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
- completed before it is intentionally prematurely terminated. As a result, the returned sample will
- still retain a substantial amount of noise as determined by the discrete timesteps selected by the
- scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
- "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
- Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
- guidance_scale (`float`, *optional*, defaults to 5.0):
- A higher guidance scale value encourages the model to generate images closely linked to the text
- `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
- negative_prompt (`str` or `List[str]`, *optional*):
- The prompt or prompts to guide what to not include in image generation. If not defined, you need to
- pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
- negative_prompt_2 (`str` or `List[str]`, *optional*):
- The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
- and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
- num_images_per_prompt (`int`, *optional*, defaults to 1):
- The number of images to generate per prompt.
- eta (`float`, *optional*, defaults to 0.0):
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
- A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
- generation deterministic.
- latents (`torch.FloatTensor`, *optional*):
- Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
- tensor is generated by sampling using the supplied random `generator`.
- prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
- provided, text embeddings are generated from the `prompt` input argument.
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
- not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
- not provided, pooled text embeddings are generated from `prompt` input argument.
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
- Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
- weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
- argument.
- ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
- ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
- Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
- if `do_classifier_free_guidance` is set to `True`.
- If not provided, embeddings are computed from the `ip_adapter_image` input argument.
- output_type (`str`, *optional*, defaults to `"pil"`):
- The output format of the generated image. Choose between `PIL.Image` or `np.array`.
- return_dict (`bool`, *optional*, defaults to `True`):
- Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
- plain tuple.
- cross_attention_kwargs (`dict`, *optional*):
- A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
- brushnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
- The outputs of the BrushNet are multiplied by `brushnet_conditioning_scale` before they are added
- to the residual in the original `unet`. If multiple BrushNets are specified in `init`, you can set
- the corresponding scale as a list.
- guess_mode (`bool`, *optional*, defaults to `False`):
- The BrushNet encoder tries to recognize the content of the input image even if you remove all
- prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
- control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
- The percentage of total steps at which the BrushNet starts applying.
- control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
- The percentage of total steps at which the BrushNet stops applying.
- original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
- If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
- `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
- explained in section 2.2 of
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
- crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
- `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
- `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
- `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
- target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
- For most cases, `target_size` should be set to the desired height and width of the generated image. If
- not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
- section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
- negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
- To negatively condition the generation process based on a specific image resolution. Part of SDXL's
- micro-conditioning as explained in section 2.2 of
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
- negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
- To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
- micro-conditioning as explained in section 2.2 of
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
- negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
- To negatively condition the generation process based on a target image resolution. It should be as same
- as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
- clip_skip (`int`, *optional*):
- Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
- the output of the pre-final layer will be used for computing the prompt embeddings.
- callback_on_step_end (`Callable`, *optional*):
- A function that calls at the end of each denoising steps during the inference. The function is called
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
- `callback_on_step_end_tensor_inputs`.
- callback_on_step_end_tensor_inputs (`List`, *optional*):
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
- `._callback_tensor_inputs` attribute of your pipeine class.
- Examples:
- Returns:
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
- If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
- otherwise a `tuple` is returned containing the output images.
- """
- callback = kwargs.pop("callback", None)
- callback_steps = kwargs.pop("callback_steps", None)
- if callback is not None:
- deprecate(
- "callback",
- "1.0.0",
- "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
- )
- if callback_steps is not None:
- deprecate(
- "callback_steps",
- "1.0.0",
- "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
- )
- brushnet = (
- self.brushnet._orig_mod
- if is_compiled_module(self.brushnet)
- else self.brushnet
- )
- # align format for control guidance
- if not isinstance(control_guidance_start, list) and isinstance(
- control_guidance_end, list
- ):
- control_guidance_start = len(control_guidance_end) * [
- control_guidance_start
- ]
- elif not isinstance(control_guidance_end, list) and isinstance(
- control_guidance_start, list
- ):
- control_guidance_end = len(control_guidance_start) * [control_guidance_end]
- elif not isinstance(control_guidance_start, list) and not isinstance(
- control_guidance_end, list
- ):
- # mult = len(brushnet.nets) if isinstance(brushnet, MultiBrushNetModel) else 1
- mult = 1
- control_guidance_start, control_guidance_end = (
- mult * [control_guidance_start],
- mult * [control_guidance_end],
- )
- # 1. Check inputs. Raise error if not correct
- self.check_inputs(
- prompt,
- prompt_2,
- image,
- mask,
- callback_steps,
- negative_prompt,
- negative_prompt_2,
- prompt_embeds,
- negative_prompt_embeds,
- pooled_prompt_embeds,
- ip_adapter_image,
- ip_adapter_image_embeds,
- negative_pooled_prompt_embeds,
- brushnet_conditioning_scale,
- control_guidance_start,
- control_guidance_end,
- callback_on_step_end_tensor_inputs,
- )
- self._guidance_scale = guidance_scale
- self._clip_skip = clip_skip
- self._cross_attention_kwargs = cross_attention_kwargs
- self._denoising_end = denoising_end
- # 2. Define call parameters
- if prompt is not None and isinstance(prompt, str):
- batch_size = 1
- elif prompt is not None and isinstance(prompt, list):
- batch_size = len(prompt)
- else:
- batch_size = prompt_embeds.shape[0]
- device = self._execution_device
- # if isinstance(brushnet, MultiBrushNetModel) and isinstance(brushnet_conditioning_scale, float):
- # brushnet_conditioning_scale = [brushnet_conditioning_scale] * len(brushnet.nets)
- global_pool_conditions = (
- brushnet.config.global_pool_conditions
- if isinstance(brushnet, BrushNetModel)
- else brushnet.nets[0].config.global_pool_conditions
- )
- guess_mode = guess_mode or global_pool_conditions
- # 3.1 Encode input prompt
- text_encoder_lora_scale = (
- self.cross_attention_kwargs.get("scale", None)
- if self.cross_attention_kwargs is not None
- else None
- )
- (
- prompt_embeds,
- negative_prompt_embeds,
- pooled_prompt_embeds,
- negative_pooled_prompt_embeds,
- ) = self.encode_prompt(
- prompt,
- prompt_2,
- device,
- num_images_per_prompt,
- self.do_classifier_free_guidance,
- negative_prompt,
- negative_prompt_2,
- prompt_embeds=prompt_embeds,
- negative_prompt_embeds=negative_prompt_embeds,
- pooled_prompt_embeds=pooled_prompt_embeds,
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
- lora_scale=text_encoder_lora_scale,
- clip_skip=self.clip_skip,
- )
- # 3.2 Encode ip_adapter_image
- if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
- image_embeds = self.prepare_ip_adapter_image_embeds(
- ip_adapter_image,
- ip_adapter_image_embeds,
- device,
- batch_size * num_images_per_prompt,
- self.do_classifier_free_guidance,
- )
- # 4. Prepare image
- if isinstance(brushnet, BrushNetModel):
- image = self.prepare_image(
- image=image,
- width=width,
- height=height,
- batch_size=batch_size * num_images_per_prompt,
- num_images_per_prompt=num_images_per_prompt,
- device=device,
- dtype=brushnet.dtype,
- do_classifier_free_guidance=self.do_classifier_free_guidance,
- guess_mode=guess_mode,
- )
- original_mask = self.prepare_image(
- image=mask,
- width=width,
- height=height,
- batch_size=batch_size * num_images_per_prompt,
- num_images_per_prompt=num_images_per_prompt,
- device=device,
- dtype=brushnet.dtype,
- do_classifier_free_guidance=self.do_classifier_free_guidance,
- guess_mode=guess_mode,
- )
- original_mask = (original_mask.sum(1)[:, None, :, :] < 0).to(image.dtype)
- height, width = image.shape[-2:]
- # elif isinstance(brushnet, MultiBrushNetModel):
- # images = []
- # for image_ in image:
- # image_ = self.prepare_image(
- # image=image_,
- # width=width,
- # height=height,
- # batch_size=batch_size * num_images_per_prompt,
- # num_images_per_prompt=num_images_per_prompt,
- # device=device,
- # dtype=brushnet.dtype,
- # do_classifier_free_guidance=self.do_classifier_free_guidance,
- # guess_mode=guess_mode,
- # )
- # images.append(image_)
- # image = images
- # height, width = image[0].shape[-2:]
- else:
- assert False
- # 5. Prepare timesteps
- self.scheduler.set_timesteps(num_inference_steps, device=device)
- timesteps = self.scheduler.timesteps
- self._num_timesteps = len(timesteps)
- # 6. Prepare latent variables
- num_channels_latents = self.unet.config.in_channels
- latents, noise = self.prepare_latents(
- batch_size * num_images_per_prompt,
- num_channels_latents,
- height,
- width,
- prompt_embeds.dtype,
- device,
- generator,
- latents,
- )
- # 6.1 prepare condition latents
- conditioning_latents = (
- self.vae.encode(image).latent_dist.sample() * self.vae.config.scaling_factor
- )
- mask = torch.nn.functional.interpolate(
- original_mask,
- size=(conditioning_latents.shape[-2], conditioning_latents.shape[-1]),
- )
- conditioning_latents = torch.concat([conditioning_latents, mask], 1)
- # 6.5 Optionally get Guidance Scale Embedding
- timestep_cond = None
- if self.unet.config.time_cond_proj_dim is not None:
- guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
- batch_size * num_images_per_prompt
- )
- timestep_cond = self.get_guidance_scale_embedding(
- guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
- ).to(device=device, dtype=latents.dtype)
- # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
- # 7.1 Create tensor stating which brushnets to keep
- brushnet_keep = []
- for i in range(len(timesteps)):
- keeps = [
- 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
- for s, e in zip(control_guidance_start, control_guidance_end)
- ]
- brushnet_keep.append(
- keeps[0] if isinstance(brushnet, BrushNetModel) else keeps
- )
- # 7.2 Prepare added time ids & embeddings
- if isinstance(image, list):
- original_size = original_size or image[0].shape[-2:]
- else:
- original_size = original_size or image.shape[-2:]
- target_size = target_size or (height, width)
- add_text_embeds = pooled_prompt_embeds
- if self.text_encoder_2 is None:
- text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
- else:
- text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
- add_time_ids = self._get_add_time_ids(
- original_size,
- crops_coords_top_left,
- target_size,
- dtype=prompt_embeds.dtype,
- text_encoder_projection_dim=text_encoder_projection_dim,
- )
- if negative_original_size is not None and negative_target_size is not None:
- negative_add_time_ids = self._get_add_time_ids(
- negative_original_size,
- negative_crops_coords_top_left,
- negative_target_size,
- dtype=prompt_embeds.dtype,
- text_encoder_projection_dim=text_encoder_projection_dim,
- )
- else:
- negative_add_time_ids = add_time_ids
- if self.do_classifier_free_guidance:
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
- add_text_embeds = torch.cat(
- [negative_pooled_prompt_embeds, add_text_embeds], dim=0
- )
- add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
- prompt_embeds = prompt_embeds.to(device)
- add_text_embeds = add_text_embeds.to(device)
- add_time_ids = add_time_ids.to(device).repeat(
- batch_size * num_images_per_prompt, 1
- )
- # 8. Denoising loop
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
- # 8.1 Apply denoising_end
- if (
- self.denoising_end is not None
- and isinstance(self.denoising_end, float)
- and self.denoising_end > 0
- and self.denoising_end < 1
- ):
- discrete_timestep_cutoff = int(
- round(
- self.scheduler.config.num_train_timesteps
- - (self.denoising_end * self.scheduler.config.num_train_timesteps)
- )
- )
- num_inference_steps = len(
- list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
- )
- timesteps = timesteps[:num_inference_steps]
- is_unet_compiled = is_compiled_module(self.unet)
- is_brushnet_compiled = is_compiled_module(self.brushnet)
- is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
- with self.progress_bar(total=num_inference_steps) as progress_bar:
- for i, t in enumerate(timesteps):
- # Relevant thread:
- # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
- if (
- is_unet_compiled and is_brushnet_compiled
- ) and is_torch_higher_equal_2_1:
- torch._inductor.cudagraph_mark_step_begin()
- # expand the latents if we are doing classifier free guidance
- latent_model_input = (
- torch.cat([latents] * 2)
- if self.do_classifier_free_guidance
- else latents
- )
- latent_model_input = self.scheduler.scale_model_input(
- latent_model_input, t
- )
- added_cond_kwargs = {
- "text_embeds": add_text_embeds,
- "time_ids": add_time_ids,
- }
- # brushnet(s) inference
- if guess_mode and self.do_classifier_free_guidance:
- # Infer BrushNet only for the conditional batch.
- control_model_input = latents
- control_model_input = self.scheduler.scale_model_input(
- control_model_input, t
- )
- brushnet_prompt_embeds = prompt_embeds.chunk(2)[1]
- brushnet_added_cond_kwargs = {
- "text_embeds": add_text_embeds.chunk(2)[1],
- "time_ids": add_time_ids.chunk(2)[1],
- }
- else:
- control_model_input = latent_model_input
- brushnet_prompt_embeds = prompt_embeds
- brushnet_added_cond_kwargs = added_cond_kwargs
- if isinstance(brushnet_keep[i], list):
- cond_scale = [
- c * s
- for c, s in zip(brushnet_conditioning_scale, brushnet_keep[i])
- ]
- else:
- brushnet_cond_scale = brushnet_conditioning_scale
- if isinstance(brushnet_cond_scale, list):
- brushnet_cond_scale = brushnet_cond_scale[0]
- cond_scale = brushnet_cond_scale * brushnet_keep[i]
- (
- down_block_res_samples,
- mid_block_res_sample,
- up_block_res_samples,
- ) = self.brushnet(
- control_model_input,
- t,
- encoder_hidden_states=brushnet_prompt_embeds,
- brushnet_cond=conditioning_latents,
- conditioning_scale=cond_scale,
- guess_mode=guess_mode,
- added_cond_kwargs=brushnet_added_cond_kwargs,
- return_dict=False,
- )
- if guess_mode and self.do_classifier_free_guidance:
- # Infered BrushNet only for the conditional batch.
- # To apply the output of BrushNet to both the unconditional and conditional batches,
- # add 0 to the unconditional batch to keep it unchanged.
- down_block_res_samples = [
- torch.cat([torch.zeros_like(d), d])
- for d in down_block_res_samples
- ]
- mid_block_res_sample = torch.cat(
- [torch.zeros_like(mid_block_res_sample), mid_block_res_sample]
- )
- up_block_res_samples = [
- torch.cat([torch.zeros_like(d), d])
- for d in up_block_res_samples
- ]
- if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
- added_cond_kwargs["image_embeds"] = image_embeds
- # predict the noise residual
- noise_pred = self.unet(
- latent_model_input,
- t,
- encoder_hidden_states=prompt_embeds,
- timestep_cond=timestep_cond,
- cross_attention_kwargs=self.cross_attention_kwargs,
- down_block_add_samples=down_block_res_samples,
- mid_block_add_sample=mid_block_res_sample,
- up_block_add_samples=up_block_res_samples,
- added_cond_kwargs=added_cond_kwargs,
- return_dict=False,
- )[0]
- # perform guidance
- if self.do_classifier_free_guidance:
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
- noise_pred = noise_pred_uncond + guidance_scale * (
- noise_pred_text - noise_pred_uncond
- )
- # compute the previous noisy sample x_t -> x_t-1
- latents = self.scheduler.step(
- noise_pred, t, latents, **extra_step_kwargs, return_dict=False
- )[0]
- if callback_on_step_end is not None:
- callback_kwargs = {}
- for k in callback_on_step_end_tensor_inputs:
- callback_kwargs[k] = locals()[k]
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
- latents = callback_outputs.pop("latents", latents)
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
- negative_prompt_embeds = callback_outputs.pop(
- "negative_prompt_embeds", negative_prompt_embeds
- )
- # call the callback, if provided
- if i == len(timesteps) - 1 or (
- (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
- ):
- progress_bar.update()
- if callback is not None and i % callback_steps == 0:
- step_idx = i // getattr(self.scheduler, "order", 1)
- callback(step_idx, t, latents)
- if not output_type == "latent":
- # make sure the VAE is in float32 mode, as it overflows in float16
- needs_upcasting = (
- self.vae.dtype == torch.float16 and self.vae.config.force_upcast
- )
- if needs_upcasting:
- self.upcast_vae()
- latents = latents.to(
- next(iter(self.vae.post_quant_conv.parameters())).dtype
- )
- # unscale/denormalize the latents
- # denormalize with the mean and std if available and not None
- has_latents_mean = (
- hasattr(self.vae.config, "latents_mean")
- and self.vae.config.latents_mean is not None
- )
- has_latents_std = (
- hasattr(self.vae.config, "latents_std")
- and self.vae.config.latents_std is not None
- )
- if has_latents_mean and has_latents_std:
- latents_mean = (
- torch.tensor(self.vae.config.latents_mean)
- .view(1, 4, 1, 1)
- .to(latents.device, latents.dtype)
- )
- latents_std = (
- torch.tensor(self.vae.config.latents_std)
- .view(1, 4, 1, 1)
- .to(latents.device, latents.dtype)
- )
- latents = (
- latents * latents_std / self.vae.config.scaling_factor
- + latents_mean
- )
- else:
- latents = latents / self.vae.config.scaling_factor
- image = self.vae.decode(latents, return_dict=False)[0]
- # cast back to fp16 if needed
- if needs_upcasting:
- self.vae.to(dtype=torch.float16)
- else:
- image = latents
- if not output_type == "latent":
- # apply watermark if available
- if self.watermark is not None:
- image = self.watermark.apply_watermark(image)
- image = self.image_processor.postprocess(image, output_type=output_type)
- # Offload all models
- self.maybe_free_model_hooks()
- if not return_dict:
- return (image,)
- return StableDiffusionXLPipelineOutput(images=image)
|