from copy import deepcopy import torch from ..utils import load_file_from_url from .retinaface import RetinaFace def init_detection_model(model_name, half=False, device="cuda", model_rootpath=None): if model_name == "retinaface_resnet50": model = RetinaFace(network_name="resnet50", half=half, device=device) model_url = "https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth" elif model_name == "retinaface_mobile0.25": model = RetinaFace(network_name="mobile0.25", half=half, device=device) model_url = "https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth" else: raise NotImplementedError(f"{model_name} is not implemented.") model_path = load_file_from_url( url=model_url, model_dir="facexlib/weights", progress=True, file_name=None, save_dir=model_rootpath, ) # TODO: clean pretrained model load_net = torch.load(model_path, map_location=lambda storage, loc: storage) # remove unnecessary 'module.' for k, v in deepcopy(load_net).items(): if k.startswith("module."): load_net[k[7:]] = v load_net.pop(k) model.load_state_dict(load_net, strict=True) model.eval() model = model.to(device) return model