1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- """
- @author: luojunhui
- """
- import torch
- import numpy as np
- def score_to_attention(score, symbol=1):
- """
- :param score:
- :param symbol:
- :return:
- """
- score_pred = torch.FloatTensor(score).unsqueeze(0)
- score_norm = symbol * torch.nn.functional.normalize(score_pred, p=2)
- score_attn = torch.nn.functional.softmax(score_norm, dim=1)
- return score_attn, score_norm, score_pred
- class NLPFunction(object):
- """
- NLP Task
- """
- def __init__(self, model):
- self.model = model
- def base_string_similarity(self, text_dict):
- """
- 基础功能,计算两个字符串的相似度
- :param text_dict:
- :return:
- """
- score_tensor = self.model.similarity(
- text_dict['text_a'],
- text_dict['text_b']
- )
- return score_tensor.squeeze().tolist()
- def base_list_similarity(self, pair_list_dict):
- """
- 计算两个list的相似度
- :return:
- """
- score_tensor = self.model.similarity(
- pair_list_dict['text_list_a'],
- pair_list_dict['text_list_b']
- )
- return score_tensor.tolist()
- def max_cross_similarity(self, data):
- """
- max
- :param data:
- :return:
- """
- score_list_max = []
- text_list_max = []
- score_array = self.base_list_similarity(data)
- text_list_a, text_list_b = data['text_list_a'], data['text_list_b']
- for i, row in enumerate(score_array):
- max_index = np.argmax(row)
- max_value = row[max_index]
- score_list_max.append(max_value)
- text_list_max.append(text_list_b[max_index])
- return score_list_max, text_list_max, score_array
- def mean_cross_similarity(self, data):
- """
- :param data:
- :return:
- """
- score_list_max, text_list_max, score_array = self.max_cross_similarity(data)
- score_tensor = torch.tensor(score_array)
- score_res = torch.mean(score_tensor, dim=1)
- score_list = score_res.tolist()
- return score_list, text_list_max, score_array
- def avg_cross_similarity(self, data):
- """
- :param data:
- :return:
- """
- score_list_b = data['score_list_b']
- symbol = data['symbol']
- score_list_max, text_list_max, score_array = self.max_cross_similarity(data)
- score_attn, score_norm, score_pred = score_to_attention(score_list_b, symbol=symbol)
- score_tensor = torch.tensor(score_array)
- score_res = torch.matmul(score_tensor, score_attn.transpose(0, 1))
- score_list = score_res.squeeze(-1).tolist()
- return score_list, text_list_max, score_array
|