textSimilarity.py 2.7 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192
  1. """
  2. @author: luojunhui
  3. """
  4. import torch
  5. import numpy as np
  6. def score_to_attention(score, symbol=1):
  7. """
  8. :param score:
  9. :param symbol:
  10. :return:
  11. """
  12. score_pred = torch.FloatTensor(score).unsqueeze(0)
  13. score_norm = symbol * torch.nn.functional.normalize(score_pred, p=2)
  14. score_attn = torch.nn.functional.softmax(score_norm, dim=1)
  15. return score_attn, score_norm, score_pred
  16. class NLPFunction(object):
  17. """
  18. NLP Task
  19. """
  20. def __init__(self, model):
  21. self.model = model
  22. def base_string_similarity(self, text_dict):
  23. """
  24. 基础功能,计算两个字符串的相似度
  25. :param text_dict:
  26. :return:
  27. """
  28. score_tensor = self.model.similarity(
  29. text_dict['text_a'],
  30. text_dict['text_b']
  31. )
  32. return score_tensor.squeeze().tolist()
  33. def base_list_similarity(self, pair_list_dict):
  34. """
  35. 计算两个list的相似度
  36. :return:
  37. """
  38. score_tensor = self.model.similarity(
  39. pair_list_dict['text_list_a'],
  40. pair_list_dict['text_list_b']
  41. )
  42. return score_tensor.tolist()
  43. def max_cross_similarity(self, data):
  44. """
  45. max
  46. :param data:
  47. :return:
  48. """
  49. score_list_max = []
  50. text_list_max = []
  51. score_array = self.base_list_similarity(data)
  52. text_list_a, text_list_b = data['text_list_a'], data['text_list_b']
  53. for i, row in enumerate(score_array):
  54. max_index = np.argmax(row)
  55. max_value = row[max_index]
  56. score_list_max.append(max_value)
  57. text_list_max.append(text_list_b[max_index])
  58. return score_list_max, text_list_max, score_array
  59. def mean_cross_similarity(self, data):
  60. """
  61. :param data:
  62. :return:
  63. """
  64. score_list_max, text_list_max, score_array = self.max_cross_similarity(data)
  65. score_tensor = torch.tensor(score_array)
  66. score_res = torch.mean(score_tensor, dim=1)
  67. score_list = score_res.tolist()
  68. return score_list, text_list_max, score_array
  69. def avg_cross_similarity(self, data):
  70. """
  71. :param data:
  72. :return:
  73. """
  74. score_list_b = data['score_list_b']
  75. symbol = data['symbol']
  76. score_list_max, text_list_max, score_array = self.max_cross_similarity(data)
  77. score_attn, score_norm, score_pred = score_to_attention(score_list_b, symbol=symbol)
  78. score_tensor = torch.tensor(score_array)
  79. score_res = torch.matmul(score_tensor, score_attn.transpose(0, 1))
  80. score_list = score_res.squeeze(-1).tolist()
  81. return score_list, text_list_max, score_array