accountServer.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. """
  2. @author: luojunhui
  3. """
  4. import json
  5. import aiohttp
  6. from applications.articleTools import ArticleDBTools
  7. from applications.config import port
  8. class AccountServer(object):
  9. """
  10. 获取标题和公众号文章的相关性
  11. """
  12. def __init__(self, mysql_client, params):
  13. self.account_name_list = None
  14. self.gh_id_list = None
  15. self.sim_type = None
  16. self.interest_type = None
  17. self.min_time = None
  18. self.max_time = None
  19. self.rate = None
  20. self.title_list = None
  21. self.view_count_filter = None
  22. self.params = params
  23. self.AT = ArticleDBTools(mysql_client)
  24. async def request_for_nlp(self, title_list, account_interest, interest_weight):
  25. """
  26. nlp process
  27. """
  28. headers = {"Content-Type": "application/json"}
  29. url = "http://localhost:{}/nlp".format(port)
  30. body = {
  31. "data": {
  32. "text_list_a": [i.replace("'", "") for i in title_list],
  33. "text_list_b": [i.replace("'", "") for i in account_interest],
  34. "score_list_b": interest_weight,
  35. "symbol": 1,
  36. },
  37. "function": "similarities_cross_mean" if self.sim_type == "mean" else "similarities_cross_avg"
  38. }
  39. async with aiohttp.ClientSession() as session:
  40. async with session.post(url, headers=headers, json=body) as response:
  41. response_text = await response.text()
  42. # print("结果:\t", response_text)
  43. if response_text:
  44. return await response.json()
  45. else:
  46. print("Received empty response")
  47. return {}
  48. def check_params(self):
  49. """
  50. 校验传参
  51. :return:
  52. """
  53. try:
  54. self.title_list = self.params["text_list"]
  55. self.account_name_list = self.params.get("account_nickname_list", [])
  56. self.gh_id_list = self.params.get("gh_id_list", [])
  57. self.rate = self.params.get("rate", 0.1)
  58. self.max_time = self.params.get("max_time")
  59. self.min_time = self.params.get("min_time")
  60. self.interest_type = self.params.get("interest_type", "top")
  61. self.sim_type = self.params.get("sim_type", "mean")
  62. self.view_count_filter = self.params.get("view_count_filter", None)
  63. return None
  64. except Exception as e:
  65. response = {"error": "Params error", "detail": str(e)}
  66. return response
  67. async def get_account_interest(
  68. self,
  69. gh_id,
  70. interest_type,
  71. view_count_filter,
  72. rate=None,
  73. msg_type=None,
  74. index_list=None,
  75. min_time=None,
  76. max_time=None,
  77. ):
  78. """
  79. 获取账号的兴趣类型
  80. :param gh_id:
  81. :param max_time:
  82. :param min_time:
  83. :param index_list:
  84. :param msg_type:
  85. :param rate:
  86. :param interest_type:
  87. :param view_count_filter:
  88. :return:
  89. """
  90. good_df, bad_df = await self.AT.get_good_bad_articles(
  91. gh_id=gh_id,
  92. interest_type=interest_type,
  93. msg_type=msg_type,
  94. index_list=index_list,
  95. min_time=min_time,
  96. max_time=max_time,
  97. rate=rate,
  98. view_count_filter=view_count_filter,
  99. )
  100. extend_dicts = {
  101. 'view_count': good_df["show_view_count"].values.tolist(),
  102. }
  103. if 'view_count_avg' in good_df.columns:
  104. extend_dicts['view_count_rate'] = \
  105. (good_df["show_view_count"] / good_df["view_count_avg"]).values.tolist()
  106. account_interest = good_df["title"].values.tolist()
  107. return account_interest, extend_dicts
  108. async def get_each_account_score_list(self, gh_id):
  109. """
  110. 获取和单个账号的相关性分数
  111. :return:
  112. """
  113. try:
  114. account_interest, extend_dicts = await self.get_account_interest(
  115. gh_id=gh_id,
  116. interest_type=self.interest_type,
  117. rate=self.rate,
  118. view_count_filter=self.view_count_filter,
  119. min_time=self.min_time,
  120. max_time=self.max_time,
  121. )
  122. interest_weight = extend_dicts['view_count']
  123. if self.sim_type == "weighted_by_view_count_rate":
  124. interest_weight = extend_dicts['view_count_rate']
  125. response = await self.request_for_nlp(
  126. title_list=self.title_list,
  127. account_interest=account_interest,
  128. interest_weight=interest_weight
  129. )
  130. score_list_key = "score_list_mean" if self.sim_type == "mean" else "score_list_avg"
  131. return {
  132. "score_list": response[score_list_key],
  133. "text_list_max": response["text_list_max"],
  134. }
  135. except Exception as e:
  136. print(e)
  137. return {
  138. "score_list": [0] * len(self.title_list),
  139. "text_list_max": self.title_list,
  140. }
  141. async def get_account_list_score_list(self):
  142. """
  143. 获取AccountList中每一个账号的相关性分数
  144. :return:
  145. """
  146. response = {}
  147. for gh_id in self.gh_id_list:
  148. if response.get(gh_id):
  149. continue
  150. else:
  151. response[gh_id] = await self.get_each_account_score_list(gh_id=gh_id)
  152. return response
  153. async def deal(self):
  154. """
  155. Deal Function
  156. :return:
  157. """
  158. return (
  159. self.check_params() if self.check_params() else await self.get_account_list_score_list()
  160. )