123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351 |
- #! /usr/bin/env python
- # -*- coding: utf-8 -*-
- # vim:fenc=utf-8
- import re
- import sys
- import time
- import random
- from typing import Dict, List, Tuple, Any, Optional
- import logging
- from datetime import datetime, timedelta
- import traceback
- import apscheduler.triggers.cron
- from apscheduler.schedulers.background import BackgroundScheduler
- import chat_service
- import configs
- import logging_service
- from logging_service import logger
- from chat_service import CozeChat, ChatServiceType
- from dialogue_manager import DialogueManager, DialogueState, DialogueStateCache
- from response_type_detector import ResponseTypeDetector
- from user_manager import UserManager, LocalUserManager, MySQLUserManager, MySQLUserRelationManager, UserRelationManager
- from openai import OpenAI
- from message_queue_backend import MessageQueueBackend, MemoryQueueBackend, AliyunRocketMQQueueBackend
- from user_profile_extractor import UserProfileExtractor
- import threading
- from message import MessageType, Message, MessageChannel
- class AgentService:
- def __init__(
- self,
- receive_backend: MessageQueueBackend,
- send_backend: MessageQueueBackend,
- human_backend: MessageQueueBackend,
- user_manager: UserManager,
- user_relation_manager: UserRelationManager,
- chat_service_type: ChatServiceType = ChatServiceType.OPENAI_COMPATIBLE
- ):
- self.receive_queue = receive_backend
- self.send_queue = send_backend
- self.human_queue = human_backend
- # 核心服务模块
- self.agent_state_cache = DialogueStateCache()
- self.user_manager = user_manager
- self.user_relation_manager = user_relation_manager
- self.user_profile_extractor = UserProfileExtractor()
- self.response_type_detector = ResponseTypeDetector()
- self.agent_registry: Dict[str, DialogueManager] = {}
- chat_config = configs.get()['chat_api']['openai_compatible']
- self.text_model_name = chat_config['text_model']
- self.multimodal_model_name = chat_config['multimodal_model']
- self.text_model_client = chat_service.OpenAICompatible.create_client(self.text_model_name)
- self.multimodal_model_client = chat_service.OpenAICompatible.create_client(self.multimodal_model_name)
- coze_config = configs.get()['chat_api']['coze']
- coze_oauth_app = CozeChat.get_oauth_app(
- coze_config['oauth_client_id'], coze_config['private_key_path'], str(coze_config['public_key_id']),
- account_id=coze_config.get('account_id', None)
- )
- self.coze_client = CozeChat(
- base_url=chat_service.COZE_CN_BASE_URL,
- auth_app=coze_oauth_app
- )
- self.chat_service_type = chat_service_type
- # 定时任务调度器
- self.scheduler = BackgroundScheduler()
- self.scheduler.start()
- self.limit_initiative_conversation_rate = True
- def setup_initiative_conversations(self, schedule_params: Optional[Dict] = None):
- if not schedule_params:
- schedule_params = {'hour': '8,16,20'}
- self.scheduler.add_job(
- self._check_initiative_conversations,
- apscheduler.triggers.cron.CronTrigger(**schedule_params)
- )
- def _get_agent_instance(self, staff_id: str, user_id: str) -> DialogueManager:
- """获取Agent实例"""
- agent_key = 'agent_{}_{}'.format(staff_id, user_id)
- if agent_key not in self.agent_registry:
- self.agent_registry[agent_key] = DialogueManager(
- staff_id, user_id, self.user_manager, self.agent_state_cache)
- return self.agent_registry[agent_key]
- def process_messages(self):
- """持续处理接收队列消息"""
- while True:
- message = self.receive_queue.consume()
- if message:
- try:
- self.process_single_message(message)
- self.receive_queue.ack(message)
- except Exception as e:
- logger.error("Error processing message: {}".format(e))
- traceback.print_exc()
- time.sleep(1)
- def _update_user_profile(self, user_id, user_profile, recent_dialogue: List[Dict]):
- profile_to_update = self.user_profile_extractor.extract_profile_info(user_profile, recent_dialogue)
- if not profile_to_update:
- logger.debug("user_id: {}, no profile info extracted".format(user_id))
- return
- logger.warning("update user profile: {}".format(profile_to_update))
- merged_profile = self.user_profile_extractor.merge_profile_info(user_profile, profile_to_update)
- self.user_manager.save_user_profile(user_id, merged_profile)
- return merged_profile
- def _schedule_aggregation_trigger(self, staff_id: str, user_id: str, delay_sec: int):
- logger.debug("user: {}, schedule trigger message after {} seconds".format(user_id, delay_sec))
- message_ts = int((time.time() + delay_sec) * 1000)
- message = Message.build(MessageType.AGGREGATION_TRIGGER, MessageChannel.SYSTEM, user_id, staff_id, None, message_ts)
- # 系统消息使用特定的msgId,无实际意义
- message.msgId = -MessageType.AGGREGATION_TRIGGER.value
- self.scheduler.add_job(lambda: self.receive_queue.produce(message),
- 'date',
- run_date=datetime.now() + timedelta(seconds=delay_sec))
- def process_single_message(self, message: Message):
- user_id = message.sender
- staff_id = message.receiver
- # 获取用户信息和Agent实例
- user_profile = self.user_manager.get_user_profile(user_id)
- agent = self._get_agent_instance(staff_id, user_id)
- # 更新对话状态
- logger.debug("process message: {}".format(message))
- need_response, message_text = agent.update_state(message)
- logger.debug("user: {}, next state: {}".format(user_id, agent.current_state))
- # 根据状态路由消息
- try:
- if agent.is_in_human_intervention():
- self._route_to_human_intervention(user_id, message)
- elif agent.current_state == DialogueState.MESSAGE_AGGREGATING:
- if message.type != MessageType.AGGREGATION_TRIGGER:
- # 产生一个触发器,但是不能由触发器递归产生
- logger.debug("user: {}, waiting next message for aggregation".format(user_id))
- self._schedule_aggregation_trigger(staff_id, user_id, agent.message_aggregation_sec)
- elif need_response:
- # 先更新用户画像再处理回复
- self._update_user_profile(user_id, user_profile, agent.dialogue_history[-10:])
- resp = self._get_chat_response(user_id, agent, message_text)
- if resp:
- recent_dialogue = agent.dialogue_history[-10:]
- if len(recent_dialogue) < 2:
- message_type = MessageType.TEXT
- else:
- message_type = self.response_type_detector.detect_type(recent_dialogue[:-1], recent_dialogue[-1])
- self._send_response(staff_id, user_id, resp, message_type)
- else:
- logger.debug(f"staff[{staff_id}], user[{user_id}]: do not need response")
- # 当前消息处理成功,持久化agent状态
- agent.persist_state()
- except Exception as e:
- agent.rollback_state()
- raise e
- def _send_response(self, staff_id, user_id, response, message_type: MessageType):
- logger.warning(f"staff[{staff_id}] user[{user_id}]: response[{message_type}] {response}")
- current_ts = int(time.time() * 1000)
- user_tags = self.user_relation_manager.get_user_tags(user_id)
- white_list_tags = {'AgentTest1', '04W4-YR-1', '04W4-YR-2', '04W4-KK-1', '04W4-SQ-1'}
- hit_white_list_tags = len(set(user_tags).intersection(white_list_tags)) > 0
- # FIXME(zhoutian)
- # 测试期间临时逻辑,只发送特定的账号或特定用户
- user_black_lists = ['7881300148979455',]
- staff_white_lists = ['1688854492669990',]
- if not (staff_id in staff_white_lists or hit_white_list_tags) \
- or user_id in user_black_lists:
- logger.warning(f"staff[{staff_id}] user[{user_id}]: skip reply")
- return None
- self.send_queue.produce(
- Message.build(message_type, MessageChannel.CORP_WECHAT,
- staff_id, user_id, response, current_ts)
- )
- def _route_to_human_intervention(self, user_id: str, origin_message: Message):
- """路由到人工干预"""
- self.human_queue.produce(Message.build(
- MessageType.TEXT,
- origin_message.channel,
- origin_message.sender,
- origin_message.receiver,
- "用户对话需人工介入,用户名:{}".format(user_id),
- int(time.time() * 1000)
- ))
- def _check_initiative_conversations(self):
- """定时检查主动发起对话"""
- for staff_user in self.user_relation_manager.list_staff_users():
- staff_id = staff_user['staff_id']
- user_id = staff_user['user_id']
- agent = self._get_agent_instance(staff_id, user_id)
- should_initiate = agent.should_initiate_conversation()
- user_tags = self.user_relation_manager.get_user_tags(user_id)
- white_list_tags = {}
- if not set(user_tags).intersection(white_list_tags):
- should_initiate = False
- if should_initiate:
- logger.warning("user: {}, initiate conversation".format(user_id))
- resp = self._get_chat_response(user_id, agent, None)
- if resp:
- self._send_response(staff_id, user_id, resp, MessageType.TEXT)
- if self.limit_initiative_conversation_rate:
- time.sleep(random.randint(10,20))
- else:
- logger.debug("user: {}, do not initiate conversation".format(user_id))
- def _get_chat_response(self, user_id: str, agent: DialogueManager,
- user_message: Optional[str]):
- """处理LLM响应"""
- chat_config = agent.build_chat_configuration(user_message, self.chat_service_type)
- logger.debug(chat_config)
- chat_response = self._call_chat_api(chat_config)
- chat_response = self.sanitize_response(chat_response)
- if response := agent.generate_response(chat_response):
- return response
- else:
- logger.warning(f"staff[{agent.staff_id}] user[{user_id}]: no response generated")
- return None
- def _call_chat_api(self, chat_config: Dict) -> str:
- if configs.get().get('debug_flags', {}).get('disable_llm_api_call', False):
- return 'LLM模拟回复 {}'.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
- if self.chat_service_type == ChatServiceType.OPENAI_COMPATIBLE:
- if chat_config['use_multimodal_model']:
- chat_completion = self.multimodal_model_client.chat.completions.create(
- messages=chat_config['messages'],
- model=self.multimodal_model_name,
- )
- else:
- chat_completion = self.text_model_client.chat.completions.create(
- messages=chat_config['messages'],
- model=self.text_model_client,
- )
- response = chat_completion.choices[0].message.content
- elif self.chat_service_type == ChatServiceType.COZE_CHAT:
- bot_user_id = 'qywx_{}'.format(chat_config['user_id'])
- response = self.coze_client.create(
- chat_config['bot_id'], bot_user_id, chat_config['messages'],
- chat_config['custom_variables']
- )
- else:
- raise Exception('Unsupported chat service type: {}'.format(self.chat_service_type))
- return response
- @staticmethod
- def sanitize_response(response: str):
- pattern = r'\[?\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}\]?'
- response = re.sub(pattern, '', response)
- response = response.strip()
- return response
- if __name__ == "__main__":
- config = configs.get()
- logging_service.setup_root_logger()
- logger.warning("current env: {}".format(configs.get_env()))
- scheduler_logger = logging.getLogger('apscheduler')
- scheduler_logger.setLevel(logging.WARNING)
- use_aliyun_mq = config['debug_flags']['use_aliyun_mq']
- # 初始化不同队列的后端
- if use_aliyun_mq:
- receive_queue = AliyunRocketMQQueueBackend(
- config['mq']['endpoints'],
- config['mq']['instance_id'],
- config['mq']['receive_topic'],
- has_consumer=True, has_producer=True,
- group_id=config['mq']['receive_group']
- )
- send_queue = AliyunRocketMQQueueBackend(
- config['mq']['endpoints'],
- config['mq']['instance_id'],
- config['mq']['send_topic'],
- has_consumer=False, has_producer=True
- )
- else:
- receive_queue = MemoryQueueBackend()
- send_queue = MemoryQueueBackend()
- human_queue = MemoryQueueBackend()
- # 初始化用户管理服务
- # FIXME(zhoutian): 如果不使用MySQL,此数据库配置非必须
- user_db_config = config['storage']['user']
- staff_db_config = config['storage']['staff']
- if config['debug_flags'].get('use_local_user_storage', False):
- user_manager = LocalUserManager()
- else:
- user_manager = MySQLUserManager(user_db_config['mysql'], user_db_config['table'], staff_db_config['table'])
- wecom_db_config = config['storage']['user_relation']
- user_relation_manager = MySQLUserRelationManager(
- user_db_config['mysql'], wecom_db_config['mysql'],
- config['storage']['staff']['table'],
- user_db_config['table'],
- wecom_db_config['table']['staff'],
- wecom_db_config['table']['relation'],
- wecom_db_config['table']['user']
- )
- # 创建Agent服务
- service = AgentService(
- receive_backend=receive_queue,
- send_backend=send_queue,
- human_backend=human_queue,
- user_manager=user_manager,
- user_relation_manager=user_relation_manager,
- chat_service_type=ChatServiceType.COZE_CHAT
- )
- # 只有企微场景需要主动发起
- if not config['debug_flags'].get('disable_active_conversation', False):
- schedule_param = config['agent_behavior'].get('schedule_param', None)
- service.setup_initiative_conversations(schedule_param)
- process_thread = threading.Thread(target=service.process_messages)
- process_thread.start()
- if not config['debug_flags'].get('console_input', False):
- process_thread.join()
- sys.exit(0)
- message_id = 0
- while True:
- print("Input next message: ")
- text = sys.stdin.readline().strip()
- if not text:
- continue
- message_id += 1
- sender = '7881300197937884'
- receiver = '1688855931724582'
- if text == MessageType.AGGREGATION_TRIGGER.name:
- message = Message.build(MessageType.AGGREGATION_TRIGGER, MessageChannel.CORP_WECHAT,
- sender, receiver, None, int(time.time() * 1000))
- else:
- message = Message.build(MessageType.TEXT, MessageChannel.CORP_WECHAT,
- sender,receiver, text, int(time.time() * 1000)
- )
- message.msgId = message_id
- receive_queue.produce(message)
- time.sleep(0.1)
- process_thread.join()
|