simple_chat_agent.py 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. import json
  2. from typing import List, Optional
  3. import pqai_agent.utils
  4. from pqai_agent.agent import DEFAULT_MAX_RUN_STEPS
  5. from pqai_agent.chat_service import OpenAICompatible
  6. from pqai_agent.logging import logger
  7. from pqai_agent.toolkit.function_tool import FunctionTool
  8. class SimpleOpenAICompatibleChatAgent:
  9. """ 最简单的多步Agent实现 """
  10. def __init__(self, model: str, system_prompt: str, tools: Optional[List[FunctionTool]] = None,
  11. generate_cfg: Optional[dict] = None, max_run_step: Optional[int] = None):
  12. self.model = model
  13. self.llm_client = OpenAICompatible.create_client(model)
  14. self.system_prompt = system_prompt
  15. if tools:
  16. self.tools = [*tools]
  17. else:
  18. self.tools = []
  19. self.tool_map = {tool.name: tool for tool in self.tools}
  20. self.generate_cfg = generate_cfg or {}
  21. self.max_run_step = max_run_step or DEFAULT_MAX_RUN_STEPS
  22. self.tool_call_records = []
  23. self.total_input_tokens = 0
  24. self.total_output_tokens = 0
  25. logger.debug(self.tool_map)
  26. def add_tool(self, tool: FunctionTool):
  27. """添加一个工具到Agent中"""
  28. if tool.name in self.tool_map:
  29. logger.warning(f"Tool {tool.name} already exists, replacing it.")
  30. self.tools.append(tool)
  31. self.tool_map[tool.name] = tool
  32. def run(self, user_input: str) -> str:
  33. run_id = pqai_agent.utils.random_str()[:12]
  34. messages = [{"role": "system", "content": self.system_prompt}]
  35. tools = [tool.get_openai_tool_schema() for tool in self.tools]
  36. messages.append({"role": "user", "content": user_input})
  37. n_steps = 0
  38. logger.debug(f"run_id[{run_id}] start agent loop. messages: {messages}")
  39. while n_steps < self.max_run_step:
  40. response = self.llm_client.chat.completions.create(model=self.model, messages=messages, tools=tools, **self.generate_cfg)
  41. message = response.choices[0].message
  42. self.total_input_tokens += response.usage.prompt_tokens
  43. self.total_output_tokens += response.usage.completion_tokens
  44. messages.append(message)
  45. logger.debug(f"run_id[{run_id}] current step content: {message.content}")
  46. if message.tool_calls:
  47. for tool_call in message.tool_calls:
  48. function_name = tool_call.function.name
  49. arguments = json.loads(tool_call.function.arguments)
  50. logger.debug(f"run_id[{run_id}] call function[{function_name}], parameter: {arguments}")
  51. if function_name in self.tool_map:
  52. result = self.tool_map[function_name](**arguments)
  53. messages.append({
  54. "role": "tool",
  55. "tool_call_id": tool_call.id,
  56. "content": json.dumps(result, ensure_ascii=False)
  57. })
  58. self.tool_call_records.append({
  59. "name": function_name,
  60. "arguments": arguments,
  61. "result": result
  62. })
  63. else:
  64. logger.error(f"run_id[{run_id}] Function {function_name} not found in tool map.")
  65. raise Exception(f"Function {function_name} not found in tool map.")
  66. else:
  67. return message.content
  68. n_steps += 1
  69. raise Exception("Max run steps exceeded")
  70. def get_total_input_tokens(self) -> int:
  71. """获取总输入token数"""
  72. return self.total_input_tokens
  73. def get_total_output_tokens(self) -> int:
  74. """获取总输出token数"""
  75. return self.total_output_tokens
  76. def get_total_cost(self) -> float:
  77. return OpenAICompatible.calculate_cost(self.model, self.total_input_tokens, self.total_output_tokens)