image_describer.py 2.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. import diskcache
  2. import threading
  3. from pqai_agent import chat_service
  4. from pqai_agent.chat_service import VOLCENGINE_MODEL_DOUBAO_1_5_VISION_PRO
  5. from pqai_agent.logging_service import logger
  6. from pqai_agent.toolkit.base import BaseToolkit
  7. from pqai_agent.toolkit.function_tool import FunctionTool
  8. # 不同实例间复用cache,但不是很好的实践
  9. _image_describer_caches = {}
  10. _cache_mutex = threading.Lock()
  11. class ImageDescriber(BaseToolkit):
  12. def __init__(self, cache_dir: str = None):
  13. self.model = VOLCENGINE_MODEL_DOUBAO_1_5_VISION_PRO
  14. self.llm_client = chat_service.OpenAICompatible.create_client(self.model)
  15. if not cache_dir:
  16. cache_dir = 'image_descriptions_cache'
  17. if cache_dir not in _image_describer_caches:
  18. with _cache_mutex:
  19. _image_describer_caches[cache_dir] = diskcache.Cache(cache_dir, size_limit=100*1024*1024)
  20. self.cache = _image_describer_caches[cache_dir]
  21. super().__init__()
  22. def analyse_image(self, image_url: str):
  23. """Takes an image URL as input and returns a detailed description of the image.
  24. Args:
  25. image_url (str): The URL of the image to be described.
  26. Returns:
  27. str: A detailed description of the image.
  28. """
  29. if image_url in self.cache:
  30. logger.debug(f"Cache hit for image URL: {image_url}")
  31. return self.cache[image_url]
  32. system_prompt = "你是一位图像分析专家。请提供输入图像的详细描述,包括图像中的文本内容(如果存在)"
  33. messages = [
  34. {'role': 'system', 'content': system_prompt},
  35. {'role': 'user', 'content': [
  36. {
  37. 'type': 'image_url',
  38. 'image_url': image_url
  39. }
  40. ]}
  41. ]
  42. response = self.llm_client.chat.completions.create(messages=messages, model=self.model)
  43. response_content = response.choices[0].message.content
  44. logger.debug(f"ImageDescriber response: {response_content}")
  45. self.cache[image_url] = response_content
  46. return response_content
  47. def get_tools(self):
  48. return [FunctionTool(self.analyse_image)]