agent_service.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399
  1. #! /usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # vim:fenc=utf-8
  4. import re
  5. import signal
  6. import sys
  7. import time
  8. from typing import Dict, List, Optional
  9. import logging
  10. from datetime import datetime, timedelta
  11. import threading
  12. import traceback
  13. import apscheduler.triggers.cron
  14. from apscheduler.schedulers.background import BackgroundScheduler
  15. from pqai_agent import configs
  16. from pqai_agent.configs import apollo_config
  17. from pqai_agent.logging_service import logger
  18. from pqai_agent import chat_service
  19. from pqai_agent.chat_service import CozeChat, ChatServiceType
  20. from pqai_agent.dialogue_manager import DialogueManager, DialogueState, DialogueStateCache
  21. from pqai_agent.rate_limiter import MessageSenderRateLimiter
  22. from pqai_agent.response_type_detector import ResponseTypeDetector
  23. from pqai_agent.user_manager import UserManager, UserRelationManager
  24. from pqai_agent.message_queue_backend import MessageQueueBackend, MemoryQueueBackend, AliyunRocketMQQueueBackend
  25. from pqai_agent.user_profile_extractor import UserProfileExtractor
  26. from pqai_agent.message import MessageType, Message, MessageChannel
  27. class AgentService:
  28. def __init__(
  29. self,
  30. receive_backend: MessageQueueBackend,
  31. send_backend: MessageQueueBackend,
  32. human_backend: MessageQueueBackend,
  33. user_manager: UserManager,
  34. user_relation_manager: UserRelationManager,
  35. chat_service_type: ChatServiceType = ChatServiceType.OPENAI_COMPATIBLE
  36. ):
  37. self.receive_queue = receive_backend
  38. self.send_queue = send_backend
  39. self.human_queue = human_backend
  40. # 核心服务模块
  41. self.agent_state_cache = DialogueStateCache()
  42. self.user_manager = user_manager
  43. self.user_relation_manager = user_relation_manager
  44. self.user_profile_extractor = UserProfileExtractor()
  45. self.response_type_detector = ResponseTypeDetector()
  46. self.agent_registry: Dict[str, DialogueManager] = {}
  47. self.config = configs.get()
  48. chat_config = self.config['chat_api']['openai_compatible']
  49. self.text_model_name = chat_config['text_model']
  50. self.multimodal_model_name = chat_config['multimodal_model']
  51. self.text_model_client = chat_service.OpenAICompatible.create_client(self.text_model_name)
  52. self.multimodal_model_client = chat_service.OpenAICompatible.create_client(self.multimodal_model_name)
  53. coze_config = configs.get()['chat_api']['coze']
  54. coze_oauth_app = CozeChat.get_oauth_app(
  55. coze_config['oauth_client_id'], coze_config['private_key_path'], str(coze_config['public_key_id']),
  56. account_id=coze_config.get('account_id', None)
  57. )
  58. self.coze_client = CozeChat(
  59. base_url=chat_service.COZE_CN_BASE_URL,
  60. auth_app=coze_oauth_app
  61. )
  62. self.chat_service_type = chat_service_type
  63. # 定时任务调度器
  64. self.scheduler = None
  65. self.scheduler_mode = self.config.get('system', {}).get('scheduler_mode', 'local')
  66. self.scheduler_queue = None
  67. self.msg_scheduler_thread = None
  68. self.running = False
  69. self.process_thread = None
  70. self._sigint_cnt = 0
  71. self.send_rate_limiter = MessageSenderRateLimiter()
  72. def setup_initiative_conversations(self, schedule_params: Optional[Dict] = None):
  73. if not schedule_params:
  74. schedule_params = {'hour': '8,16,20'}
  75. self.scheduler.add_job(
  76. self._check_initiative_conversations,
  77. apscheduler.triggers.cron.CronTrigger(**schedule_params)
  78. )
  79. def setup_scheduler(self):
  80. self.scheduler = BackgroundScheduler()
  81. if self.scheduler_mode == 'mq':
  82. logging.info("setup event message scheduler with MQ")
  83. mq_conf = self.config['mq']
  84. topic = mq_conf['scheduler_topic']
  85. self.scheduler_queue = AliyunRocketMQQueueBackend(
  86. mq_conf['endpoints'],
  87. mq_conf['instance_id'],
  88. topic,
  89. has_consumer=True, has_producer=True,
  90. group_id=mq_conf['scheduler_group'],
  91. topic_type='DELAY'
  92. )
  93. self.msg_scheduler_thread = threading.Thread(target=self.process_scheduler_events)
  94. self.msg_scheduler_thread.start()
  95. self.scheduler.start()
  96. def process_scheduler_events(self):
  97. while self.running:
  98. msg = self.scheduler_queue.consume()
  99. if msg:
  100. try:
  101. self.process_scheduler_event(msg)
  102. self.scheduler_queue.ack(msg)
  103. except Exception as e:
  104. logger.error("Error processing scheduler event: {}".format(e))
  105. time.sleep(1)
  106. logger.info("Scheduler event processing thread exit")
  107. def process_scheduler_event(self, msg: Message):
  108. if msg.type == MessageType.AGGREGATION_TRIGGER:
  109. # 延迟触发的消息,需放入接收队列以驱动Agent运转
  110. self.receive_queue.produce(msg)
  111. else:
  112. logger.warning(f"Unknown message type: {msg.type}")
  113. def get_agent_instance(self, staff_id: str, user_id: str) -> DialogueManager:
  114. """获取Agent实例"""
  115. agent_key = 'agent_{}_{}'.format(staff_id, user_id)
  116. if agent_key not in self.agent_registry:
  117. self.agent_registry[agent_key] = DialogueManager(
  118. staff_id, user_id, self.user_manager, self.agent_state_cache)
  119. return self.agent_registry[agent_key]
  120. def process_messages(self):
  121. """持续处理接收队列消息"""
  122. while self.running:
  123. message = self.receive_queue.consume()
  124. if message:
  125. try:
  126. self.process_single_message(message)
  127. self.receive_queue.ack(message)
  128. except Exception as e:
  129. logger.error("Error processing message: {}".format(e))
  130. traceback.print_exc()
  131. time.sleep(1)
  132. logger.info("Message processing thread exit")
  133. def start(self, blocking=False):
  134. self.running = True
  135. self.process_thread = threading.Thread(target=self.process_messages)
  136. self.process_thread.start()
  137. self.setup_scheduler()
  138. # 只有企微场景需要主动发起
  139. if not self.config['debug_flags'].get('disable_active_conversation', False):
  140. schedule_param = self.config['agent_behavior'].get('active_conversation_schedule_param', None)
  141. self.setup_initiative_conversations(schedule_param)
  142. signal.signal(signal.SIGINT, self._handle_sigint)
  143. if blocking:
  144. self.process_thread.join()
  145. def shutdown(self, sync=True):
  146. if not self.running:
  147. raise Exception("Service is not running")
  148. self.running = False
  149. self.scheduler.shutdown()
  150. if sync:
  151. self.process_thread.join()
  152. self.receive_queue.shutdown()
  153. self.send_queue.shutdown()
  154. if self.msg_scheduler_thread:
  155. self.msg_scheduler_thread.join()
  156. self.scheduler_queue.shutdown()
  157. def _handle_sigint(self, signum, frame):
  158. self._sigint_cnt += 1
  159. if self._sigint_cnt == 1:
  160. logger.warning("Try to shutdown gracefully...")
  161. self.shutdown(sync=True)
  162. else:
  163. logger.warning("Forcing exit")
  164. sys.exit(0)
  165. def _update_user_profile(self, user_id, user_profile, recent_dialogue: List[Dict]):
  166. profile_to_update = self.user_profile_extractor.extract_profile_info(user_profile, recent_dialogue)
  167. if not profile_to_update:
  168. logger.debug("user_id: {}, no profile info extracted".format(user_id))
  169. return
  170. logger.warning("update user profile: {}".format(profile_to_update))
  171. if profile_to_update.get('interaction_frequency', None) == 'stopped':
  172. # 和企微日常push联动,减少对用户的干扰
  173. if self.user_relation_manager.stop_user_daily_push(user_id):
  174. logger.warning(f"user[{user_id}]: daily push set to be stopped")
  175. merged_profile = self.user_profile_extractor.merge_profile_info(user_profile, profile_to_update)
  176. self.user_manager.save_user_profile(user_id, merged_profile)
  177. return merged_profile
  178. def _schedule_aggregation_trigger(self, staff_id: str, user_id: str, delay_sec: int):
  179. logger.debug("user: {}, schedule trigger message after {} seconds".format(user_id, delay_sec))
  180. message_ts = int((time.time() + delay_sec) * 1000)
  181. msg = Message.build(MessageType.AGGREGATION_TRIGGER, MessageChannel.SYSTEM, user_id, staff_id, None, message_ts)
  182. # 系统消息使用特定的msgId,无实际意义
  183. msg.msgId = -MessageType.AGGREGATION_TRIGGER.value
  184. if self.scheduler_mode == 'mq':
  185. self.scheduler_queue.produce(msg)
  186. else:
  187. self.scheduler.add_job(lambda: self.receive_queue.produce(msg),
  188. 'date',
  189. run_date=datetime.now() + timedelta(seconds=delay_sec))
  190. def process_single_message(self, message: Message):
  191. user_id = message.sender
  192. staff_id = message.receiver
  193. # 获取用户信息和Agent实例
  194. user_profile = self.user_manager.get_user_profile(user_id)
  195. agent = self.get_agent_instance(staff_id, user_id)
  196. if not agent.is_valid():
  197. logger.error(f"staff[{staff_id}] user[{user_id}]: agent is invalid")
  198. return
  199. # 更新对话状态
  200. logger.debug("process message: {}".format(message))
  201. need_response, message_text = agent.update_state(message)
  202. logger.debug("user: {}, next state: {}".format(user_id, agent.current_state))
  203. # 根据状态路由消息
  204. try:
  205. if agent.is_in_human_intervention():
  206. self._route_to_human_intervention(user_id, message)
  207. elif agent.current_state == DialogueState.MESSAGE_AGGREGATING:
  208. if message.type != MessageType.AGGREGATION_TRIGGER:
  209. # 产生一个触发器,但是不能由触发器递归产生
  210. logger.debug("user: {}, waiting next message for aggregation".format(user_id))
  211. self._schedule_aggregation_trigger(staff_id, user_id, agent.message_aggregation_sec)
  212. elif need_response:
  213. # 先更新用户画像再处理回复
  214. self._update_user_profile(user_id, user_profile, agent.dialogue_history[-10:])
  215. resp = self._get_chat_response(user_id, agent, message_text)
  216. if resp:
  217. recent_dialogue = agent.dialogue_history[-10:]
  218. agent_voice_whitelist = set(apollo_config.get_json_value("agent_voice_whitelist"))
  219. if len(recent_dialogue) < 2 or staff_id not in agent_voice_whitelist:
  220. message_type = MessageType.TEXT
  221. else:
  222. message_type = self.response_type_detector.detect_type(
  223. recent_dialogue[:-1], recent_dialogue[-1], enable_random=True)
  224. self.send_response(staff_id, user_id, resp, message_type)
  225. else:
  226. logger.debug(f"staff[{staff_id}], user[{user_id}]: do not need response")
  227. # 当前消息处理成功,commit并持久化agent状态
  228. agent.persist_state()
  229. except Exception as e:
  230. agent.rollback_state()
  231. raise e
  232. def send_response(self, staff_id, user_id, response, message_type: MessageType, skip_check=False):
  233. logger.warning(f"staff[{staff_id}] user[{user_id}]: response[{message_type}] {response}")
  234. current_ts = int(time.time() * 1000)
  235. user_tags = self.user_relation_manager.get_user_tags(user_id)
  236. white_list_tags = set(apollo_config.get_json_value("agent_response_whitelist_tags"))
  237. hit_white_list_tags = len(set(user_tags).intersection(white_list_tags)) > 0
  238. # FIXME(zhoutian)
  239. # 测试期间临时逻辑,只发送特定的账号或特定用户
  240. staff_white_lists = set(apollo_config.get_json_value("agent_response_whitelist_staffs"))
  241. if not (staff_id in staff_white_lists or hit_white_list_tags or skip_check):
  242. logger.warning(f"staff[{staff_id}] user[{user_id}]: skip reply")
  243. return
  244. self.send_rate_limiter.wait_for_sending(staff_id, response)
  245. self.send_queue.produce(
  246. Message.build(message_type, MessageChannel.CORP_WECHAT,
  247. staff_id, user_id, response, current_ts)
  248. )
  249. def _route_to_human_intervention(self, user_id: str, origin_message: Message):
  250. """路由到人工干预"""
  251. self.human_queue.produce(Message.build(
  252. MessageType.TEXT,
  253. origin_message.channel,
  254. origin_message.sender,
  255. origin_message.receiver,
  256. "用户对话需人工介入,用户名:{}".format(user_id),
  257. int(time.time() * 1000)
  258. ))
  259. def _check_initiative_conversations(self):
  260. logger.info("start to check initiative conversations")
  261. if not DialogueManager.is_time_suitable_for_active_conversation():
  262. logger.info("time is not suitable for active conversation")
  263. return
  264. white_list_tags = set(apollo_config.get_json_value('agent_initiate_whitelist_tags'))
  265. first_initiate_tags = set(apollo_config.get_json_value('agent_first_initiate_whitelist_tags', []))
  266. # 合并白名单,减少配置成本
  267. white_list_tags.update(first_initiate_tags)
  268. voice_tags = set(apollo_config.get_json_value('agent_initiate_by_voice_tags'))
  269. """定时检查主动发起对话"""
  270. for staff_user in self.user_relation_manager.list_staff_users():
  271. staff_id = staff_user['staff_id']
  272. user_id = staff_user['user_id']
  273. agent = self.get_agent_instance(staff_id, user_id)
  274. should_initiate = agent.should_initiate_conversation()
  275. user_tags = self.user_relation_manager.get_user_tags(user_id)
  276. if configs.get_env() != 'dev' and not white_list_tags.intersection(user_tags):
  277. should_initiate = False
  278. if should_initiate:
  279. logger.warning(f"user[{user_id}], tags{user_tags}: initiate conversation")
  280. # FIXME:虽然需要主动唤起的用户同时发来消息的概率很低,但仍可能会有并发冲突 需要并入事件驱动框架
  281. agent.do_state_change(DialogueState.GREETING)
  282. try:
  283. if agent.previous_state == DialogueState.INITIALIZED or first_initiate_tags.intersection(user_tags):
  284. # 完全无交互历史的用户才使用此策略,但新用户接入即会产生“我已添加了你”的消息将Agent初始化
  285. # 因此存量用户无法使用该状态做实验
  286. # TODO:增加基于对话历史的判断、策略去重;如果对话间隔过长需要使用长期记忆检索;在无长期记忆时,可采用用户添加时间来判断
  287. resp = self._generate_active_greeting_message(agent, user_tags)
  288. else:
  289. resp = self._get_chat_response(user_id, agent, None)
  290. if resp:
  291. if set(user_tags).intersection(voice_tags):
  292. message_type = MessageType.VOICE
  293. else:
  294. message_type = MessageType.TEXT
  295. self.send_response(staff_id, user_id, resp, message_type, skip_check=True)
  296. agent.persist_state()
  297. except Exception as e:
  298. # FIXME:虽然需要主动唤起的用户同时发来消息的概率很低,但仍可能会有并发冲突
  299. agent.rollback_state()
  300. logger.error("Error in active greeting: {}".format(e))
  301. else:
  302. logger.debug(f"user[{user_id}], do not initiate conversation")
  303. def _generate_active_greeting_message(self, agent: DialogueManager, user_tags: List[str]=None):
  304. chat_config = agent.build_active_greeting_config(user_tags)
  305. chat_response = self._call_chat_api(chat_config, ChatServiceType.OPENAI_COMPATIBLE)
  306. chat_response = self.sanitize_response(chat_response)
  307. if response := agent.generate_response(chat_response):
  308. return response
  309. else:
  310. logger.warning(f"staff[{agent.staff_id}] user[{agent.user_id}]: no response generated")
  311. return None
  312. def _get_chat_response(self, user_id: str, agent: DialogueManager,
  313. user_message: Optional[str]):
  314. """处理LLM响应"""
  315. chat_config = agent.build_chat_configuration(user_message, self.chat_service_type)
  316. config_for_logging = chat_config.copy()
  317. config_for_logging['messages'] = config_for_logging['messages'][-20:]
  318. logger.debug(config_for_logging)
  319. chat_response = self._call_chat_api(chat_config, self.chat_service_type)
  320. chat_response = self.sanitize_response(chat_response)
  321. if response := agent.generate_response(chat_response):
  322. return response
  323. else:
  324. logger.warning(f"staff[{agent.staff_id}] user[{user_id}]: no response generated")
  325. return None
  326. def _call_chat_api(self, chat_config: Dict, chat_service_type: ChatServiceType) -> str:
  327. if configs.get().get('debug_flags', {}).get('disable_llm_api_call', False):
  328. return 'LLM模拟回复 {}'.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
  329. if chat_service_type == ChatServiceType.OPENAI_COMPATIBLE:
  330. # 指定了LLM模型则优先使用指定模型
  331. if chat_config.get('model_name', None):
  332. llm_client = chat_service.OpenAICompatible.create_client(chat_config['model_name'])
  333. chat_completion = llm_client.chat.completions.create(
  334. messages=chat_config['messages'],
  335. model=chat_config['model_name'],
  336. )
  337. elif chat_config.get('use_multimodal_model', False):
  338. chat_completion = self.multimodal_model_client.chat.completions.create(
  339. messages=chat_config['messages'],
  340. model=self.multimodal_model_name,
  341. )
  342. else:
  343. chat_completion = self.text_model_client.chat.completions.create(
  344. messages=chat_config['messages'],
  345. model=self.text_model_name,
  346. )
  347. response = chat_completion.choices[0].message.content
  348. elif chat_service_type == ChatServiceType.COZE_CHAT:
  349. bot_user_id = 'qywx_{}'.format(chat_config['user_id'])
  350. response = self.coze_client.create(
  351. chat_config['bot_id'], bot_user_id, chat_config['messages'],
  352. chat_config['custom_variables']
  353. )
  354. else:
  355. raise Exception('Unsupported chat service type: {}'.format(self.chat_service_type))
  356. return response
  357. @staticmethod
  358. def sanitize_response(response: str):
  359. pattern = r'\[?\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}\]?'
  360. response = re.sub(pattern, '', response)
  361. response = response.strip()
  362. return response