api_server.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334
  1. #! /usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # vim:fenc=utf-8
  4. import logging
  5. from calendar import prmonth
  6. import werkzeug.exceptions
  7. from flask import Flask, request, jsonify
  8. from datetime import datetime, timedelta
  9. from argparse import ArgumentParser
  10. from openai import OpenAI
  11. from message import MessageType
  12. import chat_service
  13. import configs
  14. import json
  15. import logging_service
  16. import prompt_templates
  17. from dialogue_manager import DialogueManager
  18. from history_dialogue_service import HistoryDialogueService
  19. from response_type_detector import ResponseTypeDetector
  20. from user_manager import MySQLUserManager, MySQLUserRelationManager
  21. from user_profile_extractor import UserProfileExtractor
  22. app = Flask('agent_api_server')
  23. logger = logging_service.logger
  24. def compose_openai_chat_messages_no_time(dialogue_history, multimodal=False):
  25. messages = []
  26. for entry in dialogue_history:
  27. role = entry['role']
  28. msg_type = entry.get('type', MessageType.TEXT)
  29. fmt_time = DialogueManager.format_timestamp(entry['timestamp'])
  30. if msg_type in (MessageType.IMAGE_GW, MessageType.IMAGE_QW, MessageType.GIF):
  31. if multimodal:
  32. messages.append({
  33. "role": role,
  34. "content": [
  35. {"type": "image_url", "image_url": {"url": entry["content"]}}
  36. ]
  37. })
  38. else:
  39. logger.warning("Image in non-multimodal mode")
  40. messages.append({
  41. "role": role,
  42. "content": "[图片]"
  43. })
  44. else:
  45. messages.append({
  46. "role": role,
  47. "content": f'{entry["content"]}'
  48. })
  49. return messages
  50. def wrap_response(code, msg=None, data=None):
  51. resp = {
  52. 'code': code,
  53. 'msg': msg
  54. }
  55. if code == 200 and not msg:
  56. resp['msg'] = 'success'
  57. if data:
  58. resp['data'] = data
  59. return jsonify(resp)
  60. @app.route('/api/listStaffs', methods=['GET'])
  61. def list_staffs():
  62. staff_data = app.user_relation_manager.list_staffs()
  63. return wrap_response(200, data=staff_data)
  64. @app.route('/api/getStaffProfile', methods=['GET'])
  65. def get_staff_profile():
  66. staff_id = request.args['staff_id']
  67. profile = app.user_manager.get_staff_profile(staff_id)
  68. if not profile:
  69. return wrap_response(404, msg='staff not found')
  70. else:
  71. return wrap_response(200, data=profile)
  72. @app.route('/api/getUserProfile', methods=['GET'])
  73. def get_user_profile():
  74. user_id = request.args['user_id']
  75. profile = app.user_manager.get_user_profile(user_id)
  76. if not profile:
  77. resp = {
  78. 'code': 404,
  79. 'msg': 'user not found'
  80. }
  81. else:
  82. resp = {
  83. 'code': 200,
  84. 'msg': 'success',
  85. 'data': profile
  86. }
  87. return jsonify(resp)
  88. @app.route('/api/listUsers', methods=['GET'])
  89. def list_users():
  90. user_name = request.args.get('user_name', None)
  91. user_union_id = request.args.get('user_union_id', None)
  92. if not user_name and not user_union_id:
  93. resp = {
  94. 'code': 400,
  95. 'msg': 'user_name or user_union_id is required'
  96. }
  97. return jsonify(resp)
  98. data = app.user_manager.list_users(user_name=user_name, user_union_id=user_union_id)
  99. return jsonify({'code': 200, 'data': data})
  100. @app.route('/api/getDialogueHistory', methods=['GET'])
  101. def get_dialogue_history():
  102. staff_id = request.args['staff_id']
  103. user_id = request.args['user_id']
  104. recent_minutes = int(request.args.get('recent_minutes', 1440))
  105. dialogue_history = app.history_dialogue_service.get_dialogue_history(staff_id, user_id, recent_minutes)
  106. return jsonify({'code': 200, 'data': dialogue_history})
  107. @app.route('/api/listModels', methods=['GET'])
  108. def list_models():
  109. models = [
  110. {
  111. 'model_type': 'openai_compatible',
  112. 'model_name': chat_service.VOLCENGINE_MODEL_DEEPSEEK_V3,
  113. 'display_name': 'DeepSeek V3 on 火山'
  114. },
  115. {
  116. 'model_type': 'openai_compatible',
  117. 'model_name': chat_service.VOLCENGINE_MODEL_DOUBAO_PRO_32K,
  118. 'display_name': '豆包Pro 32K'
  119. },
  120. {
  121. 'model_type': 'openai_compatible',
  122. 'model_name': chat_service.VOLCENGINE_MODEL_DOUBAO_PRO_1_5,
  123. 'display_name': '豆包Pro 1.5'
  124. },
  125. {
  126. 'model_type': 'openai_compatible',
  127. 'model_name': chat_service.VOLCENGINE_BOT_DEEPSEEK_V3_SEARCH,
  128. 'display_name': 'DeepSeek V3联网 on 火山'
  129. },
  130. ]
  131. return wrap_response(200, data=models)
  132. @app.route('/api/listScenes', methods=['GET'])
  133. def list_scenes():
  134. scenes = [
  135. {'scene': 'greeting', 'display_name': '问候'},
  136. {'scene': 'chitchat', 'display_name': '闲聊'},
  137. {'scene': 'profile_extractor', 'display_name': '画像提取'},
  138. {'scene': 'response_type_detector', 'display_name': '回复模态判断'},
  139. {'scene': 'custom_debugging', 'display_name': '自定义调试场景'}
  140. ]
  141. return wrap_response(200, data=scenes)
  142. @app.route('/api/getBasePrompt', methods=['GET'])
  143. def get_base_prompt():
  144. scene = request.args['scene']
  145. prompt_map = {
  146. 'greeting': prompt_templates.GENERAL_GREETING_PROMPT,
  147. 'chitchat': prompt_templates.CHITCHAT_PROMPT_COZE,
  148. 'profile_extractor': prompt_templates.USER_PROFILE_EXTRACT_PROMPT,
  149. 'response_type_detector': prompt_templates.RESPONSE_TYPE_DETECT_PROMPT,
  150. 'custom_debugging': '',
  151. }
  152. model_map = {
  153. 'greeting': chat_service.VOLCENGINE_MODEL_DOUBAO_PRO_32K,
  154. 'chitchat': chat_service.VOLCENGINE_MODEL_DOUBAO_PRO_32K,
  155. 'profile_extractor': chat_service.VOLCENGINE_MODEL_DOUBAO_PRO_1_5,
  156. 'response_type_detector': chat_service.VOLCENGINE_MODEL_DOUBAO_PRO_1_5,
  157. 'custom_debugging': chat_service.VOLCENGINE_BOT_DEEPSEEK_V3_SEARCH
  158. }
  159. if scene not in prompt_map:
  160. return wrap_response(404, msg='scene not found')
  161. data = {
  162. 'model_name': model_map[scene],
  163. 'content': prompt_map[scene]
  164. }
  165. return wrap_response(200, data=data)
  166. def run_openai_chat(messages, model_name, **kwargs):
  167. volcengine_models = [
  168. chat_service.VOLCENGINE_MODEL_DOUBAO_PRO_32K,
  169. chat_service.VOLCENGINE_MODEL_DOUBAO_PRO_1_5,
  170. chat_service.VOLCENGINE_MODEL_DEEPSEEK_V3
  171. ]
  172. deepseek_models = [
  173. chat_service.DEEPSEEK_CHAT_MODEL,
  174. ]
  175. volcengine_bots = [
  176. chat_service.VOLCENGINE_BOT_DEEPSEEK_V3_SEARCH,
  177. ]
  178. if model_name in volcengine_models:
  179. llm_client = OpenAI(api_key=chat_service.VOLCENGINE_API_TOKEN, base_url=chat_service.VOLCENGINE_BASE_URL)
  180. elif model_name in volcengine_bots:
  181. llm_client = OpenAI(api_key=chat_service.VOLCENGINE_API_TOKEN, base_url=chat_service.VOLCENGINE_BOT_BASE_URL)
  182. elif model_name in deepseek_models:
  183. llm_client = OpenAI(api_key=chat_service.DEEPSEEK_API_TOKEN, base_url=chat_service.DEEPSEEK_BASE_URL)
  184. else:
  185. raise Exception('model not supported')
  186. response = llm_client.chat.completions.create(
  187. messages=messages, model=model_name, **kwargs)
  188. return response
  189. def run_extractor_prompt(req_data):
  190. prompt = req_data['prompt']
  191. user_profile = req_data['user_profile']
  192. staff_profile = req_data['staff_profile']
  193. dialogue_history = req_data['dialogue_history']
  194. model_name = req_data['model_name']
  195. prompt_context = {**staff_profile,
  196. **user_profile,
  197. 'dialogue_history': UserProfileExtractor.compose_dialogue(dialogue_history)}
  198. prompt = prompt.format(**prompt_context)
  199. messages = [
  200. {"role": "system", "content": '你是一个专业的用户画像分析助手。'},
  201. {"role": "user", "content": prompt}
  202. ]
  203. tools = [UserProfileExtractor.get_extraction_function()]
  204. response = run_openai_chat(messages, model_name, tools=tools, temperature=0)
  205. tool_calls = response.choices[0].message.tool_calls
  206. if tool_calls:
  207. function_call = tool_calls[0]
  208. if function_call.function.name == 'update_user_profile':
  209. profile_info = json.loads(function_call.function.arguments)
  210. return {k: v for k, v in profile_info.items() if v}
  211. else:
  212. logger.error("llm does not return update_user_profile")
  213. return {}
  214. else:
  215. return {}
  216. def run_chat_prompt(req_data):
  217. prompt = req_data['prompt']
  218. staff_profile = req_data.get('staff_profile', {})
  219. user_profile = req_data.get('user_profile', {})
  220. dialogue_history = req_data.get('dialogue_history', [])
  221. model_name = req_data['model_name']
  222. current_timestamp = req_data['current_timestamp'] / 1000
  223. prompt_context = {**staff_profile, **user_profile}
  224. current_hour = datetime.fromtimestamp(current_timestamp).hour
  225. prompt_context['last_interaction_interval'] = 0
  226. prompt_context['current_time_period'] = DialogueManager.get_time_context(current_hour)
  227. prompt_context['current_hour'] = current_hour
  228. prompt_context['if_first_interaction'] = False if dialogue_history else True
  229. last_message = dialogue_history[-1] if dialogue_history else {'role': 'assistant'}
  230. prompt_context['if_active_greeting'] = False if last_message['role'] == 'user' else True
  231. current_time_str = datetime.fromtimestamp(current_timestamp).strftime('%Y-%m-%d %H:%M:%S')
  232. system_prompt = {
  233. 'role': 'system',
  234. 'content': prompt.format(**prompt_context)
  235. }
  236. messages = [system_prompt]
  237. if req_data['scene'] == 'custom_debugging':
  238. messages.extend(compose_openai_chat_messages_no_time(dialogue_history))
  239. else:
  240. messages.extend(DialogueManager.compose_chat_messages_openai_compatible(dialogue_history, current_time_str))
  241. return run_openai_chat(messages, model_name, temperature=1, top_p=0.7, max_tokens=1024)
  242. def run_response_type_prompt(req_data):
  243. prompt = req_data['prompt']
  244. dialogue_history = req_data['dialogue_history']
  245. model_name = req_data['model_name']
  246. composed_dialogue = ResponseTypeDetector.compose_dialogue(dialogue_history[:-1])
  247. next_message = DialogueManager.format_dialogue_content(dialogue_history[-1])
  248. prompt = prompt.format(
  249. dialogue_history=composed_dialogue,
  250. message=next_message
  251. )
  252. messages = [
  253. {'role': 'system', 'content': '你是一个专业的智能助手'},
  254. {'role': 'user', 'content': prompt}
  255. ]
  256. return run_openai_chat(messages, model_name,temperature=0.2, max_tokens=128)
  257. @app.route('/api/runPrompt', methods=['POST'])
  258. def run_prompt():
  259. try:
  260. req_data = request.json
  261. logger.debug(req_data)
  262. scene = req_data['scene']
  263. if scene == 'profile_extractor':
  264. response = run_extractor_prompt(req_data)
  265. return wrap_response(200, data=response)
  266. elif scene == 'response_type_detector':
  267. response = run_response_type_prompt(req_data)
  268. return wrap_response(200, data=response.choices[0].message.content)
  269. else:
  270. response = run_chat_prompt(req_data)
  271. return wrap_response(200, data=response.choices[0].message.content)
  272. except Exception as e:
  273. logger.error(e)
  274. return wrap_response(500, msg='Error: {}'.format(e))
  275. @app.errorhandler(werkzeug.exceptions.BadRequest)
  276. def handle_bad_request(e):
  277. logger.error(e)
  278. return wrap_response(400, msg='Bad Request: {}'.format(e.description))
  279. if __name__ == '__main__':
  280. parser = ArgumentParser()
  281. parser.add_argument('--prod', action='store_true')
  282. parser.add_argument('--host', default='127.0.0.1')
  283. parser.add_argument('--port', type=int, default=8083)
  284. parser.add_argument('--log-level', default='INFO')
  285. args = parser.parse_args()
  286. config = configs.get()
  287. logging_level = logging.getLevelName(args.log_level)
  288. logging_service.setup_root_logger(level=logging_level, logfile_name='agent_api_server.log')
  289. user_db_config = config['storage']['user']
  290. staff_db_config = config['storage']['staff']
  291. user_manager = MySQLUserManager(user_db_config['mysql'], user_db_config['table'], staff_db_config['table'])
  292. app.user_manager = user_manager
  293. wecom_db_config = config['storage']['user_relation']
  294. user_relation_manager = MySQLUserRelationManager(
  295. user_db_config['mysql'], wecom_db_config['mysql'],
  296. config['storage']['staff']['table'],
  297. user_db_config['table'],
  298. wecom_db_config['table']['staff'],
  299. wecom_db_config['table']['relation'],
  300. wecom_db_config['table']['user']
  301. )
  302. app.user_relation_manager = user_relation_manager
  303. app.history_dialogue_service = HistoryDialogueService(
  304. config['storage']['history_dialogue']['api_base_url']
  305. )
  306. app.run(debug=not args.prod, host=args.host, port=args.port)