dialogue_manager.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447
  1. #! /usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # vim:fenc=utf-8
  4. from enum import Enum, auto
  5. from typing import Dict, List, Optional, Tuple, Any
  6. from datetime import datetime
  7. import time
  8. import logging
  9. import configs
  10. import cozepy
  11. from history_dialogue_service import HistoryDialogueService
  12. from chat_service import ChatServiceType
  13. from message import MessageType, Message
  14. # from vector_memory_manager import VectorMemoryManager
  15. from structured_memory_manager import StructuredMemoryManager
  16. from user_manager import UserManager
  17. from prompt_templates import *
  18. # 配置日志
  19. logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(funcName)s[%(lineno)d] - %(levelname)s - %(message)s')
  20. logger = logging.getLogger(__name__)
  21. class DummyVectorMemoryManager:
  22. def __init__(self, user_id):
  23. pass
  24. def add_to_memory(self, conversation):
  25. pass
  26. def retrieve_relevant_memories(self, query, k=3):
  27. return []
  28. class DialogueState(Enum):
  29. GREETING = auto() # 问候状态
  30. CHITCHAT = auto() # 闲聊状态
  31. CLARIFICATION = auto() # 澄清状态
  32. FAREWELL = auto() # 告别状态
  33. HUMAN_INTERVENTION = auto() # 人工介入状态
  34. MESSAGE_AGGREGATING = auto() # 等待消息状态
  35. class TimeContext(Enum):
  36. EARLY_MORNING = "清晨" # 清晨 (5:00-7:59)
  37. MORNING = "上午" # 上午 (8:00-11:59)
  38. NOON = "中午" # 中午 (12:00-13:59)
  39. AFTERNOON = "下午" # 下午 (14:00-17:59)
  40. EVENING = "晚上" # 晚上 (18:00-21:59)
  41. NIGHT = "深夜" # 夜晚 (22:00-4:59)
  42. def __init__(self, description):
  43. self.description = description
  44. class DialogueManager:
  45. def __init__(self, staff_id: str, user_id: str, user_manager: UserManager):
  46. config = configs.get()
  47. self.staff_id = staff_id
  48. self.user_id = user_id
  49. self.user_manager = user_manager
  50. self.current_state = DialogueState.GREETING
  51. self.previous_state = None
  52. # 目前实际仅用作调试,拼装prompt时使用history_dialogue_service获取
  53. self.dialogue_history = []
  54. self.user_profile = self.user_manager.get_user_profile(user_id)
  55. self.last_interaction_time = 0
  56. self.consecutive_clarifications = 0
  57. self.complex_request_counter = 0
  58. self.human_intervention_triggered = False
  59. self.vector_memory = DummyVectorMemoryManager(user_id)
  60. self.message_aggregation_sec = config.get('message_aggregation_sec', 5)
  61. self.unprocessed_messages = []
  62. self.history_dialogue_service = HistoryDialogueService(
  63. config['storage']['history_dialogue']['api_base_url']
  64. )
  65. self._reset_interaction_time()
  66. def _reset_interaction_time(self):
  67. last_message = self.history_dialogue_service.get_dialogue_history(self.staff_id, self.user_id, 1)
  68. if last_message:
  69. self.last_interaction_time = last_message[0]['timestamp']
  70. else:
  71. # 默认设置为24小时前
  72. self.last_interaction_time = int(time.time() * 1000) - 24 * 3600 * 1000
  73. @staticmethod
  74. def get_current_time_context(self) -> TimeContext:
  75. """获取当前时间上下文"""
  76. current_hour = datetime.now().hour
  77. if 5 <= current_hour < 8:
  78. return TimeContext.EARLY_MORNING
  79. elif 8 <= current_hour < 12:
  80. return TimeContext.MORNING
  81. elif 12 <= current_hour < 14:
  82. return TimeContext.NOON
  83. elif 14 <= current_hour < 18:
  84. return TimeContext.AFTERNOON
  85. elif 18 <= current_hour < 22:
  86. return TimeContext.EVENING
  87. else:
  88. return TimeContext.NIGHT
  89. def update_state(self, message: Message) -> Tuple[DialogueState, Optional[str]]:
  90. """根据用户消息更新对话状态,并返回下一条需处理的用户消息"""
  91. message_text = message.content
  92. message_ts = message.sendTime
  93. # 如果当前已经是人工介入状态,保持该状态
  94. if self.current_state == DialogueState.HUMAN_INTERVENTION:
  95. # 记录对话历史,但不改变状态
  96. self.dialogue_history.append({
  97. "role": "user",
  98. "content": message_text,
  99. "timestamp": int(time.time() * 1000),
  100. "state": self.current_state.name
  101. })
  102. return self.current_state, message_text
  103. # 检查是否处于消息聚合状态
  104. if self.current_state == DialogueState.MESSAGE_AGGREGATING:
  105. # 收到的是特殊定时触发的空消息,且在聚合中,且已经超时,恢复之前状态,继续处理
  106. if message.type == MessageType.AGGREGATION_TRIGGER \
  107. and message_ts - self.last_interaction_time > self.message_aggregation_sec * 1000:
  108. logging.debug("user_id: {}, last interaction time: {}".format(
  109. self.user_id, datetime.fromtimestamp(self.last_interaction_time / 1000)))
  110. self.current_state = self.previous_state
  111. else:
  112. # 非空消息,更新最后交互时间,保持消息聚合状态
  113. if message_text:
  114. self.unprocessed_messages.append(message_text)
  115. self.last_interaction_time = message_ts
  116. return self.current_state, message_text
  117. elif message.type != MessageType.AGGREGATION_TRIGGER and self.message_aggregation_sec > 0:
  118. # 收到有内容的用户消息,切换到消息聚合状态
  119. self.previous_state = self.current_state
  120. self.current_state = DialogueState.MESSAGE_AGGREGATING
  121. self.unprocessed_messages.append(message_text)
  122. # 更新最后交互时间
  123. if message_text:
  124. self.last_interaction_time = message_ts
  125. return self.current_state, message_text
  126. # 保存前一个状态
  127. self.previous_state = self.current_state
  128. # 检查是否长时间未交互(超过3小时)
  129. if self._get_hours_since_last_interaction() > 3:
  130. self.current_state = DialogueState.GREETING
  131. self.dialogue_history = [] # 重置对话历史
  132. self.consecutive_clarifications = 0 # 重置澄清计数
  133. self.complex_request_counter = 0 # 重置复杂请求计数
  134. # 获得未处理的聚合消息,并清空未处理队列
  135. if message_text:
  136. self.unprocessed_messages.append(message_text)
  137. if self.unprocessed_messages:
  138. message_text = '\n'.join(self.unprocessed_messages)
  139. self.unprocessed_messages.clear()
  140. # 根据消息内容和当前状态确定新状态
  141. new_state = self._determine_state_from_message(message_text)
  142. # 处理连续澄清的情况
  143. if new_state == DialogueState.CLARIFICATION:
  144. self.consecutive_clarifications += 1
  145. if self.consecutive_clarifications >= 2:
  146. new_state = DialogueState.HUMAN_INTERVENTION
  147. # self._trigger_human_intervention("连续多次澄清请求")
  148. else:
  149. self.consecutive_clarifications = 0
  150. # 更新状态
  151. self.current_state = new_state
  152. # 更新最后交互时间
  153. if message_text:
  154. self.last_interaction_time = message_ts
  155. # 记录对话历史
  156. if message_text:
  157. self.dialogue_history.append({
  158. "role": "user",
  159. "content": message_text,
  160. "timestamp": message_ts,
  161. "state": self.current_state.name
  162. })
  163. return self.current_state, message_text
  164. def _determine_state_from_message(self, message_text: Optional[str]) -> DialogueState:
  165. """根据消息内容确定对话状态"""
  166. if not message_text:
  167. return self.current_state
  168. # 简单的规则-关键词匹配
  169. message_lower = message_text.lower()
  170. # 判断是否是复杂请求
  171. complex_request_keywords = ["帮我", "怎么办", "我需要", "麻烦你", "请帮助", "急", "紧急"]
  172. if any(keyword in message_lower for keyword in complex_request_keywords):
  173. self.complex_request_counter += 1
  174. # 如果检测到困难请求且计数达到阈值,触发人工介入
  175. if self.complex_request_counter >= 1:
  176. # self._trigger_human_intervention("检测到复杂请求")
  177. return DialogueState.HUMAN_INTERVENTION
  178. else:
  179. # 如果不是复杂请求,重置计数器
  180. self.complex_request_counter = 0
  181. # 问候检测
  182. greeting_keywords = ["你好", "早上好", "中午好", "晚上好", "嗨", "在吗"]
  183. if any(keyword in message_lower for keyword in greeting_keywords):
  184. return DialogueState.GREETING
  185. # 告别检测
  186. farewell_keywords = ["再见", "拜拜", "晚安", "明天见", "回头见"]
  187. if any(keyword in message_lower for keyword in farewell_keywords):
  188. return DialogueState.FAREWELL
  189. # 澄清请求
  190. clarification_keywords = ["没明白", "不明白", "没听懂", "不懂", "什么意思", "再说一遍"]
  191. if any(keyword in message_lower for keyword in clarification_keywords):
  192. return DialogueState.CLARIFICATION
  193. # 默认为闲聊状态
  194. return DialogueState.CHITCHAT
  195. def _trigger_human_intervention(self, reason: str) -> None:
  196. """触发人工介入"""
  197. if not self.human_intervention_triggered:
  198. self.human_intervention_triggered = True
  199. # 记录人工介入事件
  200. event = {
  201. "timestamp": int(time.time() * 1000),
  202. "reason": reason,
  203. "dialogue_context": self.history_dialogue_service.get_dialogue_history(self.staff_id, self.user_id, 5)
  204. }
  205. # 更新用户资料中的人工介入历史
  206. if "human_intervention_history" not in self.user_profile:
  207. self.user_profile["human_intervention_history"] = []
  208. self.user_profile["human_intervention_history"].append(event)
  209. self.user_manager.save_user_profile(self.user_id, self.user_profile)
  210. # 发送告警
  211. self._send_human_intervention_alert(reason)
  212. def _send_human_intervention_alert(self, reason: str) -> None:
  213. alert_message = f"""
  214. 人工介入告警
  215. 用户ID: {self.user_id}
  216. 用户昵称: {self.user_profile.get("nickname", "未知")}
  217. 时间: {int(time.time() * 1000)}
  218. 原因: {reason}
  219. 最近对话:
  220. """
  221. # 添加最近的对话记录
  222. recent_dialogues = self.history_dialogue_service.get_dialogue_history(self.staff_id, self.user_id, 5)
  223. for dialogue in recent_dialogues:
  224. alert_message += f"\n{dialogue['role']}: {dialogue['content']}"
  225. # TODO(zhoutian): 实现发送告警的具体逻辑
  226. logger.warning(alert_message)
  227. def resume_from_human_intervention(self) -> None:
  228. """从人工介入状态恢复"""
  229. if self.current_state == DialogueState.HUMAN_INTERVENTION:
  230. self.current_state = DialogueState.GREETING
  231. self.human_intervention_triggered = False
  232. self.consecutive_clarifications = 0
  233. self.complex_request_counter = 0
  234. # 记录恢复事件
  235. self.dialogue_history.append({
  236. "role": "system",
  237. "content": "已从人工介入状态恢复到自动对话",
  238. "timestamp": int(time.time() * 1000),
  239. "state": self.current_state.name
  240. })
  241. def generate_response(self, llm_response: str) -> Optional[str]:
  242. """根据当前状态处理LLM响应,如果处于人工介入状态则返回None"""
  243. # 如果处于人工介入状态,不生成回复
  244. if self.current_state == DialogueState.HUMAN_INTERVENTION:
  245. return None
  246. # 记录响应到对话历史
  247. current_ts = int(time.time() * 1000)
  248. self.dialogue_history.append({
  249. "role": "assistant",
  250. "content": llm_response,
  251. "timestamp": current_ts,
  252. "state": self.current_state.name
  253. })
  254. self.last_interaction_time = current_ts
  255. return llm_response
  256. def _get_hours_since_last_interaction(self, precision: int = -1):
  257. time_diff = (time.time() * 1000) - self.last_interaction_time
  258. hours_passed = time_diff / 1000 / 3600
  259. if precision >= 0:
  260. return round(hours_passed, precision)
  261. return hours_passed
  262. def should_initiate_conversation(self) -> bool:
  263. """判断是否应该主动发起对话"""
  264. # 如果处于人工介入状态,不应主动发起对话
  265. if self.current_state == DialogueState.HUMAN_INTERVENTION:
  266. return False
  267. hours_passed = self._get_hours_since_last_interaction()
  268. # 获取当前时间上下文
  269. time_context = self.get_current_time_context()
  270. # 根据用户交互频率偏好设置不同的阈值
  271. interaction_frequency = self.user_profile.get("interaction_frequency", "medium")
  272. # 设置不同偏好的交互时间阈值(小时)
  273. thresholds = {
  274. "low": 24, # 低频率:一天一次
  275. "medium": 12, # 中频率:半天一次
  276. "high": 6 # 高频率:大约6小时一次
  277. }
  278. threshold = thresholds.get(interaction_frequency, 12)
  279. # 如果足够时间已经过去
  280. if hours_passed >= threshold:
  281. # 根据时间上下文决定主动交互的状态
  282. if time_context in [TimeContext.EARLY_MORNING, TimeContext.MORNING,
  283. TimeContext.NOON, TimeContext.AFTERNOON,
  284. TimeContext.EVENING]:
  285. return True
  286. return False
  287. def is_in_human_intervention(self) -> bool:
  288. """检查是否处于人工介入状态"""
  289. return self.current_state == DialogueState.HUMAN_INTERVENTION
  290. def get_prompt_context(self, user_message) -> Dict:
  291. # 获取当前时间上下文
  292. time_context = self.get_current_time_context()
  293. # 刷新用户画像
  294. self.user_profile = self.user_manager.get_user_profile(self.user_id)
  295. context = {
  296. "user_profile": self.user_profile,
  297. "current_state": self.current_state.name,
  298. "previous_state": self.previous_state.name if self.previous_state else None,
  299. "current_time_period": time_context.description,
  300. # "dialogue_history": self.dialogue_history[-10:],
  301. "last_interaction_interval": self._get_hours_since_last_interaction(2),
  302. "if_first_interaction": False,
  303. "if_active_greeting": False if user_message else True,
  304. **self.user_profile
  305. }
  306. # 获取长期记忆
  307. relevant_memories = self.vector_memory.retrieve_relevant_memories(user_message)
  308. context["long_term_memory"] = {
  309. "relevant_conversations": relevant_memories
  310. }
  311. return context
  312. def _select_prompt(self, state):
  313. state_to_prompt_map = {
  314. DialogueState.GREETING: GENERAL_GREETING_PROMPT,
  315. DialogueState.CHITCHAT: GENERAL_GREETING_PROMPT,
  316. }
  317. return state_to_prompt_map[state]
  318. def _select_coze_bot(self, state):
  319. state_to_bot_map = {
  320. DialogueState.GREETING: '7479005417885417487',
  321. DialogueState.CHITCHAT: '7479005417885417487'
  322. }
  323. return state_to_bot_map[state]
  324. def _create_system_message(self, prompt_context):
  325. prompt_template = self._select_prompt(self.current_state)
  326. prompt = prompt_template.format(**prompt_context)
  327. return {'role': 'system', 'content': prompt}
  328. def build_chat_configuration(
  329. self,
  330. user_message: Optional[str] = None,
  331. chat_service_type: ChatServiceType = ChatServiceType.OPENAI_COMPATIBLE
  332. ) -> Dict:
  333. """
  334. 参数:
  335. user_message: 当前用户消息,如果是主动交互则为None
  336. 返回:
  337. 消息列表
  338. """
  339. dialogue_history = self.history_dialogue_service.get_dialogue_history(self.staff_id, self.user_id)
  340. logging.debug("staff[{}], user[{}], dialogue_history: {}".format(
  341. self.staff_id, self.user_id, dialogue_history
  342. ))
  343. messages = []
  344. config = {}
  345. prompt_context = self.get_prompt_context(user_message)
  346. if chat_service_type == ChatServiceType.OPENAI_COMPATIBLE:
  347. system_message = self._create_system_message(prompt_context)
  348. messages.append(system_message)
  349. for entry in dialogue_history:
  350. role = entry['role']
  351. messages.append({
  352. "role": role,
  353. "content": entry["content"]
  354. })
  355. elif chat_service_type == ChatServiceType.COZE_CHAT:
  356. for entry in dialogue_history:
  357. if not entry['content']:
  358. logging.warning("staff[{}], user[{}], role[{}]: empty content in dialogue history".format(
  359. self.staff_id, self.user_id, entry['role']
  360. ))
  361. continue
  362. role = entry['role']
  363. if role == 'user':
  364. messages.append(cozepy.Message.build_user_question_text(entry["content"]))
  365. elif role == 'assistant':
  366. messages.append(cozepy.Message.build_assistant_answer(entry['content']))
  367. custom_variables = {}
  368. for k, v in prompt_context.items():
  369. custom_variables[k] = str(v)
  370. custom_variables.pop('user_profile', None)
  371. config['custom_variables'] = custom_variables
  372. config['bot_id'] = self._select_coze_bot(self.current_state)
  373. #FIXME(zhoutian): 这种方法并不可靠,需要通过状态来判断
  374. if not user_message:
  375. messages.append(cozepy.Message.build_user_question_text('请开始对话'))
  376. #FIXME(zhoutian): 临时报警
  377. if user_message and not messages:
  378. logging.error(f"staff[{self.staff_id}], user[{self.user_id}]: inconsistency in messages")
  379. config['messages'] = messages
  380. return config