image_describer.py 1.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
  1. import diskcache
  2. from pqai_agent import chat_service
  3. from pqai_agent.chat_service import VOLCENGINE_MODEL_DOUBAO_1_5_VISION_PRO
  4. from pqai_agent.logging_service import logger
  5. from pqai_agent.toolkit.base import BaseToolkit
  6. from pqai_agent.toolkit.function_tool import FunctionTool
  7. class ImageDescriber(BaseToolkit):
  8. def __init__(self, cache_dir: str = None):
  9. self.model = VOLCENGINE_MODEL_DOUBAO_1_5_VISION_PRO
  10. self.llm_client = chat_service.OpenAICompatible.create_client(self.model)
  11. if not cache_dir:
  12. cache_dir = 'image_descriptions_cache'
  13. self.cache = diskcache.Cache(cache_dir, size_limit=100*1024*1024)
  14. super().__init__()
  15. def analyse_image(self, image_url: str):
  16. """Takes an image URL as input and returns a detailed description of the image.
  17. Args:
  18. image_url (str): The URL of the image to be described.
  19. Returns:
  20. str: A detailed description of the image.
  21. """
  22. if image_url in self.cache:
  23. logger.debug(f"Cache hit for image URL: {image_url}")
  24. return self.cache[image_url]
  25. system_prompt = "你是一位图像分析专家。请提供输入图像的详细描述,包括图像中的文本内容(如果存在)"
  26. messages = [
  27. {'role': 'system', 'content': system_prompt},
  28. {'role': 'user', 'content': [
  29. {
  30. 'type': 'image_url',
  31. 'image_url': image_url
  32. }
  33. ]}
  34. ]
  35. response = self.llm_client.chat.completions.create(messages=messages, model=self.model)
  36. response_content = response.choices[0].message.content
  37. logger.debug(f"ImageDescriber response: {response_content}")
  38. self.cache[image_url] = response_content
  39. return response_content
  40. def get_tools(self):
  41. return [FunctionTool(self.analyse_image)]