#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 from enum import Enum, auto from typing import Dict, List, Optional, Tuple, Any from datetime import datetime import time from logging_service import logger import pymysql.cursors import configs import cozepy from database import MySQLManager from history_dialogue_service import HistoryDialogueService from chat_service import ChatServiceType from message import MessageType, Message from user_manager import UserManager from prompt_templates import * class DummyVectorMemoryManager: def __init__(self, user_id): pass def add_to_memory(self, conversation): pass def retrieve_relevant_memories(self, query, k=3): return [] class DialogueState(int, Enum): INITIALIZED = 0 GREETING = 1 # 问候状态 CHITCHAT = 2 # 闲聊状态 CLARIFICATION = 3 # 澄清状态 FAREWELL = 4 # 告别状态 HUMAN_INTERVENTION = 5 # 人工介入状态 MESSAGE_AGGREGATING = 6 # 等待消息状态 class TimeContext(Enum): EARLY_MORNING = "清晨" # 清晨 (5:00-7:59) MORNING = "上午" # 上午 (8:00-11:59) NOON = "中午" # 中午 (12:00-13:59) AFTERNOON = "下午" # 下午 (14:00-17:59) EVENING = "晚上" # 晚上 (18:00-21:59) NIGHT = "深夜" # 夜晚 (22:00-4:59) def __init__(self, description): self.description = description class DialogueStateCache: def __init__(self): config = configs.get() self.db = MySQLManager(config['storage']['agent_state']['mysql']) self.table = config['storage']['agent_state']['table'] def get_state(self, staff_id: str, user_id: str) -> Tuple[DialogueState, DialogueState]: query = f"SELECT current_state, previous_state FROM {self.table} WHERE staff_id=%s AND user_id=%s" data = self.db.select(query, pymysql.cursors.DictCursor, (staff_id, user_id)) if not data: logger.warning(f"staff[{staff_id}], user[{user_id}]: agent state not found") state = DialogueState.CHITCHAT previous_state = DialogueState.INITIALIZED self.set_state(staff_id, user_id, state, previous_state) else: state = DialogueState(data[0]['current_state']) previous_state = DialogueState(data[0]['previous_state']) return state, previous_state def set_state(self, staff_id: str, user_id: str, state: DialogueState, previous_state: DialogueState): query = f"INSERT INTO {self.table} (staff_id, user_id, current_state, previous_state)" \ f" VALUES (%s, %s, %s, %s) " \ f"ON DUPLICATE KEY UPDATE current_state=%s, previous_state=%s" rows = self.db.execute(query, (staff_id, user_id, state.value, previous_state.value, state.value, previous_state.value)) logger.debug("staff[{}], user[{}]: set state: {}, previous state: {}, rows affected: {}" .format(staff_id, user_id, state, previous_state, rows)) class DialogueManager: def __init__(self, staff_id: str, user_id: str, user_manager: UserManager, state_cache: DialogueStateCache): config = configs.get() self.staff_id = staff_id self.user_id = user_id self.user_manager = user_manager self.state_cache = state_cache self.current_state = DialogueState.GREETING self.previous_state = DialogueState.INITIALIZED # 目前实际仅用作调试,拼装prompt时使用history_dialogue_service获取 self.dialogue_history = [] self.user_profile = self.user_manager.get_user_profile(user_id) self.staff_profile = self.user_manager.get_staff_profile(staff_id) self.last_interaction_time = 0 self.consecutive_clarifications = 0 self.complex_request_counter = 0 self.human_intervention_triggered = False self.vector_memory = DummyVectorMemoryManager(user_id) self.message_aggregation_sec = config.get('message_aggregation_sec', 5) self.unprocessed_messages = [] self.history_dialogue_service = HistoryDialogueService( config['storage']['history_dialogue']['api_base_url'] ) self._recover_state() def _recover_state(self): self.current_state, self.previous_state = self.state_cache.get_state(self.staff_id, self.user_id) # 从数据库恢复对话状态 last_message = self.history_dialogue_service.get_dialogue_history(self.staff_id, self.user_id) if last_message: self.last_interaction_time = last_message[-1]['timestamp'] else: # 默认设置为24小时前 self.last_interaction_time = int(time.time() * 1000) - 24 * 3600 * 1000 time_for_read = datetime.fromtimestamp(self.last_interaction_time / 1000).strftime("%Y-%m-%d %H:%M:%S") logger.debug(f"staff[{self.staff_id}], user[{self.user_id}]: state: {self.current_state.name}, last_interaction: {time_for_read}") def persist_state(self): """持久化对话状态""" self.state_cache.set_state(self.staff_id, self.user_id, self.current_state, self.previous_state) @staticmethod def get_current_time_context() -> TimeContext: """获取当前时间上下文""" current_hour = datetime.now().hour if 5 <= current_hour < 8: return TimeContext.EARLY_MORNING elif 8 <= current_hour < 12: return TimeContext.MORNING elif 12 <= current_hour < 14: return TimeContext.NOON elif 14 <= current_hour < 18: return TimeContext.AFTERNOON elif 18 <= current_hour < 22: return TimeContext.EVENING else: return TimeContext.NIGHT def update_state(self, message: Message) -> Tuple[bool, Optional[str]]: """根据用户消息更新对话状态,并返回是否需要发起回复 及下一条需处理的用户消息""" message_text = message.content message_ts = message.sendTime # 如果当前已经是人工介入状态,保持该状态 if self.current_state == DialogueState.HUMAN_INTERVENTION: # 记录对话历史,但不改变状态 self.dialogue_history.append({ "role": "user", "content": message_text, "timestamp": int(time.time() * 1000), "state": self.current_state.name }) return False, message_text # 检查是否处于消息聚合状态 if self.current_state == DialogueState.MESSAGE_AGGREGATING: # 收到的是特殊定时触发的空消息,且在聚合中,且已经超时,恢复之前状态,继续处理 if message.type == MessageType.AGGREGATION_TRIGGER \ and message_ts - self.last_interaction_time > self.message_aggregation_sec * 1000: logger.debug("user_id: {}, last interaction time: {}".format( self.user_id, datetime.fromtimestamp(self.last_interaction_time / 1000))) self.current_state = self.previous_state else: # 非空消息,更新最后交互时间,保持消息聚合状态 if message_text: self.unprocessed_messages.append(message_text) self.last_interaction_time = message_ts return False, message_text else: if message.type == MessageType.AGGREGATION_TRIGGER: # 未在聚合状态中,收到的聚合触发消息为过时消息,不应当处理 return False, None if message.type != MessageType.AGGREGATION_TRIGGER and self.message_aggregation_sec > 0: # 收到有内容的用户消息,切换到消息聚合状态 self.previous_state = self.current_state self.current_state = DialogueState.MESSAGE_AGGREGATING self.unprocessed_messages.append(message_text) # 更新最后交互时间 if message_text: self.last_interaction_time = message_ts self.persist_state() return False, message_text # 保存前一个状态 self.previous_state = self.current_state # 检查是否长时间未交互(超过3小时) if self._get_hours_since_last_interaction() > 3: self.current_state = DialogueState.GREETING self.dialogue_history = [] # 重置对话历史 self.consecutive_clarifications = 0 # 重置澄清计数 self.complex_request_counter = 0 # 重置复杂请求计数 # 获得未处理的聚合消息,并清空未处理队列 if message_text: self.unprocessed_messages.append(message_text) if self.unprocessed_messages: message_text = '\n'.join(self.unprocessed_messages) self.unprocessed_messages.clear() # 根据消息内容和当前状态确定新状态 new_state = self._determine_state_from_message(message_text) # 处理连续澄清的情况 if new_state == DialogueState.CLARIFICATION: self.consecutive_clarifications += 1 # FIXME(zhoutian): 规则过于简单 if self.consecutive_clarifications >= 10000: new_state = DialogueState.HUMAN_INTERVENTION # self._trigger_human_intervention("连续多次澄清请求") else: self.consecutive_clarifications = 0 # 更新状态并持久化 self.current_state = new_state self.persist_state() # 更新最后交互时间 if message_text: self.last_interaction_time = message_ts # 记录对话历史 if message_text: self.dialogue_history.append({ "role": "user", "content": message_text, "timestamp": message_ts, "state": self.current_state.name }) return True, message_text def _determine_state_from_message(self, message_text: Optional[str]) -> DialogueState: """根据消息内容确定对话状态""" if not message_text: return self.current_state # 简单的规则-关键词匹配 message_lower = message_text.lower() # 判断是否是复杂请求 # FIXME(zhoutian): 规则过于简单 # complex_request_keywords = ["帮我", "怎么办", "我需要", "麻烦你", "请帮助", "急", "紧急"] # if any(keyword in message_lower for keyword in complex_request_keywords): # self.complex_request_counter += 1 # # # 如果检测到困难请求且计数达到阈值,触发人工介入 # if self.complex_request_counter >= 1: # # self._trigger_human_intervention("检测到复杂请求") # return DialogueState.HUMAN_INTERVENTION # else: # # 如果不是复杂请求,重置计数器 # self.complex_request_counter = 0 # 问候检测 greeting_keywords = ["你好", "早上好", "中午好", "晚上好", "嗨", "在吗"] if any(keyword in message_lower for keyword in greeting_keywords): return DialogueState.GREETING # 告别检测 farewell_keywords = ["再见", "拜拜", "晚安", "明天见", "回头见"] if any(keyword in message_lower for keyword in farewell_keywords): return DialogueState.FAREWELL # 澄清请求 clarification_keywords = ["没明白", "不明白", "没听懂", "不懂", "什么意思", "再说一遍"] if any(keyword in message_lower for keyword in clarification_keywords): return DialogueState.CLARIFICATION # 默认为闲聊状态 return DialogueState.CHITCHAT def _trigger_human_intervention(self, reason: str) -> None: """触发人工介入""" if not self.human_intervention_triggered: self.human_intervention_triggered = True # 记录人工介入事件 event = { "timestamp": int(time.time() * 1000), "reason": reason, "dialogue_context": self.history_dialogue_service.get_dialogue_history(self.staff_id, self.user_id, 60) } # 更新用户资料中的人工介入历史 if "human_intervention_history" not in self.user_profile: self.user_profile["human_intervention_history"] = [] self.user_profile["human_intervention_history"].append(event) self.user_manager.save_user_profile(self.user_id, self.user_profile) # 发送告警 self._send_human_intervention_alert(reason) def _send_human_intervention_alert(self, reason: str) -> None: alert_message = f""" 人工介入告警 用户ID: {self.user_id} 用户昵称: {self.user_profile.get("nickname", "未知")} 时间: {int(time.time() * 1000)} 原因: {reason} 最近对话: """ # 添加最近的对话记录 recent_dialogues = self.history_dialogue_service.get_dialogue_history(self.staff_id, self.user_id, 10) for dialogue in recent_dialogues: alert_message += f"\n{dialogue['role']}: {dialogue['content']}" # TODO(zhoutian): 实现发送告警的具体逻辑 logger.warning(alert_message) def resume_from_human_intervention(self) -> None: """从人工介入状态恢复""" if self.current_state == DialogueState.HUMAN_INTERVENTION: self.current_state = DialogueState.GREETING self.human_intervention_triggered = False self.consecutive_clarifications = 0 self.complex_request_counter = 0 # 记录恢复事件 self.dialogue_history.append({ "role": "system", "content": "已从人工介入状态恢复到自动对话", "timestamp": int(time.time() * 1000), "state": self.current_state.name }) def generate_response(self, llm_response: str) -> Optional[str]: """根据当前状态处理LLM响应,如果处于人工介入状态则返回None""" # 如果处于人工介入状态,不生成回复 if self.current_state == DialogueState.HUMAN_INTERVENTION: return None # 记录响应到对话历史 current_ts = int(time.time() * 1000) self.dialogue_history.append({ "role": "assistant", "content": llm_response, "timestamp": current_ts, "state": self.current_state.name }) self.last_interaction_time = current_ts return llm_response def _get_hours_since_last_interaction(self, precision: int = -1): time_diff = (time.time() * 1000) - self.last_interaction_time hours_passed = time_diff / 1000 / 3600 if precision >= 0: return round(hours_passed, precision) return hours_passed def should_initiate_conversation(self) -> bool: """判断是否应该主动发起对话""" # 如果处于人工介入状态,不应主动发起对话 if self.current_state == DialogueState.HUMAN_INTERVENTION: return False hours_passed = self._get_hours_since_last_interaction() # 获取当前时间上下文 time_context = self.get_current_time_context() # 根据用户交互频率偏好设置不同的阈值 interaction_frequency = self.user_profile.get("interaction_frequency", "medium") # 设置不同偏好的交互时间阈值(小时) thresholds = { "low": 24, # 低频率:一天一次 "medium": 12, # 中频率:半天一次 "high": 6 # 高频率:大约6小时一次 } threshold = thresholds.get(interaction_frequency, 12) if hours_passed < threshold: return False # 根据时间上下文决定主动交互的状态 if time_context in [TimeContext.MORNING, TimeContext.NOON, TimeContext.AFTERNOON, TimeContext.EVENING]: self.previous_state = self.current_state self.current_state = DialogueState.GREETING self.persist_state() return True return False def is_in_human_intervention(self) -> bool: """检查是否处于人工介入状态""" return self.current_state == DialogueState.HUMAN_INTERVENTION def get_prompt_context(self, user_message) -> Dict: # 获取当前时间上下文 time_context = self.get_current_time_context() # 刷新用户画像 self.user_profile = self.user_manager.get_user_profile(self.user_id) # 刷新员工画像(不一定需要) self.staff_profile = self.user_manager.get_staff_profile(self.staff_id) context = { "user_profile": self.user_profile, "current_state": self.current_state.name, "previous_state": self.previous_state.name, "current_time_period": time_context.description, "current_hour": datetime.now().hour, # "dialogue_history": self.dialogue_history[-10:], "last_interaction_interval": self._get_hours_since_last_interaction(2), "if_first_interaction": True if self.previous_state == DialogueState.INITIALIZED else False, "if_active_greeting": False if user_message else True, **self.user_profile, **self.staff_profile } # 获取长期记忆 relevant_memories = self.vector_memory.retrieve_relevant_memories(user_message) context["long_term_memory"] = { "relevant_conversations": relevant_memories } return context def _select_prompt(self, state): state_to_prompt_map = { DialogueState.GREETING: GENERAL_GREETING_PROMPT, DialogueState.CHITCHAT: GENERAL_GREETING_PROMPT, DialogueState.FAREWELL: GENERAL_GREETING_PROMPT } return state_to_prompt_map[state] def _select_coze_bot(self, state): state_to_bot_map = { DialogueState.GREETING: '7486112546798780425', DialogueState.CHITCHAT: '7491300566573301770', DialogueState.FAREWELL: '7491300566573301770' } return state_to_bot_map[state] def _create_system_message(self, prompt_context): prompt_template = self._select_prompt(self.current_state) prompt = prompt_template.format(**prompt_context) return {'role': 'system', 'content': prompt} def build_chat_configuration( self, user_message: Optional[str] = None, chat_service_type: ChatServiceType = ChatServiceType.OPENAI_COMPATIBLE ) -> Dict: """ 参数: user_message: 当前用户消息,如果是主动交互则为None 返回: 消息列表 """ dialogue_history = self.history_dialogue_service.get_dialogue_history(self.staff_id, self.user_id) logger.debug("staff[{}], user[{}], dialogue_history: {}".format( self.staff_id, self.user_id, dialogue_history )) messages = [] config = {} prompt_context = self.get_prompt_context(user_message) if chat_service_type == ChatServiceType.OPENAI_COMPATIBLE: system_message = self._create_system_message(prompt_context) messages.append(system_message) for entry in dialogue_history: role = entry['role'] messages.append({ "role": role, "content": entry["content"] }) elif chat_service_type == ChatServiceType.COZE_CHAT: for entry in dialogue_history: if not entry['content']: logger.warning("staff[{}], user[{}], role[{}]: empty content in dialogue history".format( self.staff_id, self.user_id, entry['role'] )) continue role = entry['role'] if role == 'user': messages.append(cozepy.Message.build_user_question_text(entry["content"])) elif role == 'assistant': messages.append(cozepy.Message.build_assistant_answer(entry['content'])) custom_variables = {} for k, v in prompt_context.items(): custom_variables[k] = str(v) custom_variables.pop('user_profile', None) config['custom_variables'] = custom_variables config['bot_id'] = self._select_coze_bot(self.current_state) #FIXME(zhoutian): 这种方法并不可靠,需要结合状态来判断 if self.current_state == DialogueState.GREETING and not messages: messages.append(cozepy.Message.build_user_question_text('请开始对话')) #FIXME(zhoutian): 临时报警 if user_message and not messages: logger.error(f"staff[{self.staff_id}], user[{self.user_id}]: inconsistency in messages") config['messages'] = messages return config if __name__ == '__main__': state_cache = DialogueStateCache() state_cache.set_state('1688854492669990', '7881302581935903', DialogueState.CHITCHAT, DialogueState.GREETING)