|
@@ -0,0 +1,271 @@
|
|
|
|
+import json
|
|
|
|
+import datetime
|
|
|
|
+import random
|
|
|
|
+
|
|
|
|
+from tqdm import tqdm
|
|
|
|
+from openai import OpenAI
|
|
|
|
+from pymysql.cursors import DictCursor
|
|
|
|
+from pqai_agent.database import MySQLManager
|
|
|
|
+from pqai_agent.agents.message_push_agent import MessagePushAgent
|
|
|
|
+from pqai_agent.agents.message_reply_agent import MessageReplyAgent
|
|
|
|
+
|
|
|
|
+def fetch_deepseek_completion(prompt, output_type='text'):
|
|
|
|
+ """
|
|
|
|
+ deep_seek方法
|
|
|
|
+ """
|
|
|
|
+ client = OpenAI(
|
|
|
|
+ api_key='sk-cfd2df92c8864ab999d66a615ee812c5',
|
|
|
|
+ base_url="https://api.deepseek.com"
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ # get response format
|
|
|
|
+ if output_type == "json":
|
|
|
|
+ response_format = {"type": "json_object"}
|
|
|
|
+ else:
|
|
|
|
+ response_format = {"type": "text"}
|
|
|
|
+
|
|
|
|
+ chat_completion = client.chat.completions.create(
|
|
|
|
+ messages=[
|
|
|
|
+ {
|
|
|
|
+ "role": "user",
|
|
|
|
+ "content": prompt,
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ model="deepseek-chat",
|
|
|
|
+ response_format=response_format,
|
|
|
|
+ )
|
|
|
|
+ response = chat_completion.choices[0].message.content
|
|
|
|
+ if output_type == "json":
|
|
|
|
+ response_json = json.loads(response)
|
|
|
|
+ return response_json
|
|
|
|
+
|
|
|
|
+ return response
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def get_profile_info(user_id_, user_type):
|
|
|
|
+ match user_type:
|
|
|
|
+ case "user":
|
|
|
|
+ sql = f"""
|
|
|
|
+ select iconurl as 'avatar', profile_data_v1 as 'profile'
|
|
|
|
+ from third_party_user where third_party_user_id = %s;
|
|
|
|
+ """
|
|
|
|
+ case "staff":
|
|
|
|
+ sql = f"""
|
|
|
|
+ select agent_profile as 'profile'
|
|
|
|
+ from qywx_employee where third_party_user_id = %s;
|
|
|
|
+ """
|
|
|
|
+ case _:
|
|
|
|
+ raise ValueError("user_type must be 'user' or 'staff'")
|
|
|
|
+
|
|
|
|
+ return mysql_client.select(sql, cursor_type=DictCursor, args=(user_id_,))
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def evaluate_conversation_quality_task(dialogue_history, user_profile_, agent_profile):
|
|
|
|
+ """
|
|
|
|
+ :param dialogue_history:
|
|
|
|
+ :param user_profile_:
|
|
|
|
+ :param agent_profile:
|
|
|
|
+ :return:
|
|
|
|
+ """
|
|
|
|
+ output_format = {
|
|
|
|
+ "1.1": {
|
|
|
|
+ "score": 5,
|
|
|
|
+ "reason": ""
|
|
|
|
+ },
|
|
|
|
+ "1.2": {
|
|
|
|
+ "score": 8,
|
|
|
|
+ "reason": "reason"
|
|
|
|
+ },
|
|
|
|
+ "1.3": {
|
|
|
|
+ "score": 10,
|
|
|
|
+ "reason": "reason"
|
|
|
|
+ },
|
|
|
|
+ "1.4": {
|
|
|
|
+ "score": 10,
|
|
|
|
+ "reason": "reason"
|
|
|
|
+ },
|
|
|
|
+ "1.5": {
|
|
|
|
+ "score": 10,
|
|
|
|
+ "reason": "reason"
|
|
|
|
+ },
|
|
|
|
+ "1.6": {
|
|
|
|
+ "score": 10,
|
|
|
|
+ "reason": "reason"
|
|
|
|
+ },
|
|
|
|
+ "2.1": {
|
|
|
|
+ "score": 9,
|
|
|
|
+ "reason": "reason"
|
|
|
|
+ },
|
|
|
|
+ "2.2": {
|
|
|
|
+ "score": 10,
|
|
|
|
+ "reason": "reason"
|
|
|
|
+ },
|
|
|
|
+ "2.3": {
|
|
|
|
+ "score": 10,
|
|
|
|
+ "reason": "reason"
|
|
|
|
+ },
|
|
|
|
+ "total_score": "total_score",
|
|
|
|
+ "improvement_suggestions": "suggestions",
|
|
|
|
+ }
|
|
|
|
+ prompt_ = f"""
|
|
|
|
+ 你是一名优秀的 agent 评估员,请根据以下场景和输入,对该 agent 的回复能力进行评估,用分数量化
|
|
|
|
+ 场景:
|
|
|
|
+ 智能体对话场景, 智能体(agent)和用户(user)进行对话聊天
|
|
|
|
+ 输入:
|
|
|
|
+ agent 的人设:agent_profile: {agent_profile}
|
|
|
|
+ 用户的人设: user_profile: {user_profile_}
|
|
|
|
+ 对话历史:dialogue_history: {dialogue_history}
|
|
|
|
+ 评估标准, 满分为 100分,拆分到以下每一个小项,每一个小项的得分表示该小项的能力,60% 的分表示及格,80% 的分表示优秀:
|
|
|
|
+ 1. 对话能力(30分)
|
|
|
|
+ 1.1 语言是否流畅(10分)
|
|
|
|
+ 1.2 上下文是否连贯,语义是否一致(10分)
|
|
|
|
+ 1.3 agent 是否感知用户结束聊天的意图并且适当结束聊天(10分)
|
|
|
|
+ 1.4 agent 回复消息的时间间隔是否合理,符合真人对话规律 (10分)
|
|
|
|
+ 1.5 agent 回复的消息是否具有高情商,互动能力是否好,能否和用户共情,提升用户的情感体验 (20分)
|
|
|
|
+ 1.6 agent 回复的消息是否解决了用户提出的问题 (10分)
|
|
|
|
+ 2. 角色一致性(30分)
|
|
|
|
+ 2.1 agent 语言风格是否符合agent人设(10分)
|
|
|
|
+ 2.2 agent 语言风格是否适合用户人设(10分)
|
|
|
|
+ 2.3 agent 回复内容不要超越用户的认知上限(10分)
|
|
|
|
+ 输出:
|
|
|
|
+ 输出为 json 格式,输出格式规范 {output_format}
|
|
|
|
+ """
|
|
|
|
+ return prompt_
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def evaluate_push_agent_prompt(dialogue_history, push_message, user_profile_, agent_profile):
|
|
|
|
+ """
|
|
|
|
+ :param dialogue_history:
|
|
|
|
+ :param push_message:
|
|
|
|
+ :param user_profile_:
|
|
|
|
+ :param agent_profile:
|
|
|
|
+ :return:
|
|
|
|
+ """
|
|
|
|
+ output_format = {
|
|
|
|
+ "1.1": {
|
|
|
|
+ "score": 5,
|
|
|
|
+ "reason": "push_message尝试联系用户的头像,但用户兴趣未明确提及戏曲"
|
|
|
|
+ },
|
|
|
|
+ "1.2": {
|
|
|
|
+ "score": 8,
|
|
|
|
+ "reason": "语言风格轻松友好,适合大多数用户,但未完全匹配用户特定风格"
|
|
|
|
+ },
|
|
|
|
+ "1.3": {
|
|
|
|
+ "score": 10,
|
|
|
|
+ "reason": "信息未超出用户认知范围"
|
|
|
|
+ },
|
|
|
|
+ "2.1": {
|
|
|
|
+ "score": 9,
|
|
|
|
+ "reason": "语言风格符合agent人设,友好且亲切"
|
|
|
|
+ },
|
|
|
|
+ "2.2": {
|
|
|
|
+ "score": 10,
|
|
|
|
+ "reason": "信息未超出agent人设的认知范围"
|
|
|
|
+ },
|
|
|
|
+ "3.1": {
|
|
|
|
+ "score": 15,
|
|
|
|
+ "reason": "push_message有潜力勾起用户兴趣,但未直接关联用户已知兴趣"
|
|
|
|
+ },
|
|
|
|
+ "3.2": {
|
|
|
|
+ "score": 10,
|
|
|
|
+ "reason": "信息真实"
|
|
|
|
+ },
|
|
|
|
+ "3.3": {
|
|
|
|
+ "score": 12,
|
|
|
|
+ "reason": "表现出一定的拟人化和情商,但共情程度可进一步提升"
|
|
|
|
+ },
|
|
|
|
+ "total_score": 79,
|
|
|
|
+ "improvement_suggestions": "建议更深入地挖掘和利用用户已知的兴趣爱好来定制push_message,以增强相关性和用户参与度。同时,可以尝试更多共情的表达方式,以提升用户的情感体验。"
|
|
|
|
+ }
|
|
|
|
+ prompt_ = f"""
|
|
|
|
+ 你是一名优秀的 agent 评估员,请根据以下场景和输入,对该 agent 的能力进行评估,用分数量化
|
|
|
|
+ 场景:
|
|
|
|
+ 智能体对话场景, 智能体(agent)向用户发起对话
|
|
|
|
+ agent 需要通过分析 user 和 agent 直接的历史对话,以及 user 和 agent 的人设信息,向用户发送一条消息(push_message)
|
|
|
|
+ 输入:
|
|
|
|
+ agent 的人设:agent_profile: {agent_profile}
|
|
|
|
+ 用户的人设: user_profile: {user_profile_}
|
|
|
|
+ 对话历史:dialogue_history: {dialogue_history}
|
|
|
|
+ agent 的唤起对话:push_message: {push_message}
|
|
|
|
+ 评估标准, 满分为 100分,拆分到以下每一个小项,每一个小项的得分表示该小项的能力,60% 的分表示及格,80% 的分表示优秀:
|
|
|
|
+ 1. push_message 的内容 和 user_profile的相关性(30分)
|
|
|
|
+ 1.1 push_message 是否迎合用户的兴趣爱好 (满分 10分)
|
|
|
|
+ 1.2 push_message 的语言风格是否适合用户语言风格 (满分 10分)
|
|
|
|
+ 1.3 push_message 的信息是否超出用户的认知范围 (满分 10分)
|
|
|
|
+ 2. push_message 和 agent_profile 的相关性(20分)
|
|
|
|
+ 2.1 push_message 的语言风格是否符合 agent 人设(满分 10分)
|
|
|
|
+ 2.2 push_message 的信息是否超出 agent人设的认知范围(满分 10分)
|
|
|
|
+ 3. push_message 质量量化 (50分)
|
|
|
|
+ 3.1 push_message 是否能勾起用户的兴趣,驱动用户聊天激情 (满分 25分)
|
|
|
|
+ 3.2 push_message 的信息是否真实 (满分 10分)
|
|
|
|
+ 3.3 push_message 是否具有拟人化,高情商,与用户共情,提升用户的情感体验(满分 15分)
|
|
|
|
+ 输出:
|
|
|
|
+ 输出为 json 格式,输出格式规范 {output_format}
|
|
|
|
+ """
|
|
|
|
+ return prompt_
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def evaluate_reply_agent(dialogue_history, reply_message, user_profile_, agent_profile):
|
|
|
|
+ """
|
|
|
|
+
|
|
|
|
+ :param dialogue_history:
|
|
|
|
+ :param reply_message:
|
|
|
|
+ :param user_profile_:
|
|
|
|
+ :param agent_profile:
|
|
|
|
+ :return:
|
|
|
|
+ """
|
|
|
|
+ return
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+config = {
|
|
|
|
+ 'host': 'rm-bp13g3ra2f59q49xs.mysql.rds.aliyuncs.com',
|
|
|
|
+ 'port': 3306,
|
|
|
|
+ 'user': 'wqsd',
|
|
|
|
+ 'password': 'wqsd@2025',
|
|
|
|
+ 'database': 'ai_agent',
|
|
|
|
+ 'charset': 'utf8mb4'
|
|
|
|
+}
|
|
|
|
+mysql_client = MySQLManager(config)
|
|
|
|
+
|
|
|
|
+if __name__ == '__main__':
|
|
|
|
+ with open("scripts/inner_dialogues.json", "r", encoding="utf-8") as f:
|
|
|
|
+ data = json.load(f)
|
|
|
|
+ dialogues = random.sample(data[10: ], 5)
|
|
|
|
+ F = []
|
|
|
|
+ for sub_dialogues in tqdm(dialogues):
|
|
|
|
+ user_id = sub_dialogues['user_id']
|
|
|
|
+ user_profile_response = get_profile_info(user_id, "user")
|
|
|
|
+ user_profile, avatar = json.loads(user_profile_response[0]['profile']), user_profile_response[0]['avatar']
|
|
|
|
+
|
|
|
|
+ user_profile['avatar'] = avatar
|
|
|
|
+ user_profile['current_datetime'] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
+
|
|
|
|
+ staff_id = sub_dialogues['staff_id']
|
|
|
|
+ staff_profile_response = get_profile_info(staff_id, "staff")
|
|
|
|
+ staff_profile = json.loads(staff_profile_response[0]['profile'])
|
|
|
|
+
|
|
|
|
+ user_profile['formatted_staff_profile'] = staff_profile
|
|
|
|
+
|
|
|
|
+ push_agent = MessagePushAgent()
|
|
|
|
+ # reply_agent = MessageReplyAgent()
|
|
|
|
+ for message in sub_dialogues['dialogues']:
|
|
|
|
+ agent_message = push_agent.generate_message(
|
|
|
|
+ context=user_profile,
|
|
|
|
+ dialogue_history=message
|
|
|
|
+ )
|
|
|
|
+ prompt = evaluate_push_agent_prompt(message, agent_message, user_profile, staff_profile)
|
|
|
|
+ response = fetch_deepseek_completion(prompt, output_type='json')
|
|
|
|
+ obj = {
|
|
|
|
+ "user_profile": user_profile,
|
|
|
|
+ "agent_profile": staff_profile,
|
|
|
|
+ "dialogue_history": message,
|
|
|
|
+ "push_message": agent_message,
|
|
|
|
+ "push_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
|
|
|
+ "evaluation_result": response
|
|
|
|
+ }
|
|
|
|
+ F.append(obj)
|
|
|
|
+ with open("scripts/push_message_evaluation_result.json", "w", encoding="utf-8") as f:
|
|
|
|
+ f.write(json.dumps(F, indent=4, ensure_ascii=False))
|
|
|
|
+
|
|
|
|
+
|