"use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault").default; Object.defineProperty(exports, "__esModule", { value: true }); exports.QrSegment = exports.QrCode = exports.Mode = exports.Ecc = void 0; var _createForOfIteratorHelper2 = _interopRequireDefault(require("@babel/runtime/helpers/createForOfIteratorHelper")); var _classCallCheck2 = _interopRequireDefault(require("@babel/runtime/helpers/classCallCheck")); var _createClass2 = _interopRequireDefault(require("@babel/runtime/helpers/createClass")); var _defineProperty2 = _interopRequireDefault(require("@babel/runtime/helpers/defineProperty")); var _class, _class2; // Copyright (c) Project Nayuki. (MIT License) // https://www.nayuki.io/page/qr-code-generator-library // Modification with code reorder and prettier // -------------------------------------------- // Appends the given number of low-order bits of the given value // to the given buffer. Requires 0 <= len <= 31 and 0 <= val < 2^len. function appendBits(val, len, bb) { if (len < 0 || len > 31 || val >>> len != 0) { throw new RangeError('Value out of range'); } for (var i = len - 1; i >= 0; i-- // Append bit by bit ) { bb.push(val >>> i & 1); } } // Returns true iff the i'th bit of x is set to 1. function getBit(x, i) { return (x >>> i & 1) != 0; } // Throws an exception if the given condition is false. function assert(cond) { if (!cond) { throw new Error('Assertion error'); } } /*---- Public helper enumeration ----*/ /* * Describes how a segment's data bits are numbererpreted. Immutable. */ var Mode = exports.Mode = /*#__PURE__*/function () { function Mode(modeBits, numBitsCharCount) { (0, _classCallCheck2.default)(this, Mode); /*-- Constructor and fields --*/ // The mode indicator bits, which is a unumber4 value (range 0 to 15). (0, _defineProperty2.default)(this, "modeBits", void 0); // Number of character count bits for three different version ranges. (0, _defineProperty2.default)(this, "numBitsCharCount", void 0); this.modeBits = modeBits; this.numBitsCharCount = numBitsCharCount; } /*-- Method --*/ // (Package-private) Returns the bit width of the character count field for a segment in // this mode in a QR Code at the given version number. The result is in the range [0, 16]. (0, _createClass2.default)(Mode, [{ key: "numCharCountBits", value: function numCharCountBits(ver) { return this.numBitsCharCount[Math.floor((ver + 7) / 17)]; } }]); return Mode; }(); /*---- Public helper enumeration ----*/ /* * The error correction level in a QR Code symbol. Immutable. */ _class = Mode; /*-- Constants --*/ (0, _defineProperty2.default)(Mode, "NUMERIC", new _class(0x1, [10, 12, 14])); (0, _defineProperty2.default)(Mode, "ALPHANUMERIC", new _class(0x2, [9, 11, 13])); (0, _defineProperty2.default)(Mode, "BYTE", new _class(0x4, [8, 16, 16])); (0, _defineProperty2.default)(Mode, "KANJI", new _class(0x8, [8, 10, 12])); (0, _defineProperty2.default)(Mode, "ECI", new _class(0x7, [0, 0, 0])); var Ecc = exports.Ecc = /*#__PURE__*/(0, _createClass2.default)(function Ecc(ordinal, formatBits) { (0, _classCallCheck2.default)(this, Ecc); // The QR Code can tolerate about 30% erroneous codewords /*-- Constructor and fields --*/ // In the range 0 to 3 (unsigned 2-bit numbereger). (0, _defineProperty2.default)(this, "ordinal", void 0); // (Package-private) In the range 0 to 3 (unsigned 2-bit numbereger). (0, _defineProperty2.default)(this, "formatBits", void 0); this.ordinal = ordinal; this.formatBits = formatBits; }); /* * A segment of character/binary/control data in a QR Code symbol. * Instances of this class are immutable. * The mid-level way to create a segment is to take the payload data * and call a static factory function such as QrSegment.makeNumeric(). * The low-level way to create a segment is to custom-make the bit buffer * and call the QrSegment() constructor with appropriate values. * This segment class imposes no length restrictions, but QR Codes have restrictions. * Even in the most favorable conditions, a QR Code can only hold 7089 characters of data. * Any segment longer than this is meaningless for the purpose of generating QR Codes. */ _class2 = Ecc; /*-- Constants --*/ (0, _defineProperty2.default)(Ecc, "LOW", new _class2(0, 1)); // The QR Code can tolerate about 7% erroneous codewords (0, _defineProperty2.default)(Ecc, "MEDIUM", new _class2(1, 0)); // The QR Code can tolerate about 15% erroneous codewords (0, _defineProperty2.default)(Ecc, "QUARTILE", new _class2(2, 3)); // The QR Code can tolerate about 25% erroneous codewords (0, _defineProperty2.default)(Ecc, "HIGH", new _class2(3, 2)); var QrSegment = exports.QrSegment = /*#__PURE__*/function () { // Creates a new QR Code segment with the given attributes and data. // The character count (numChars) must agree with the mode and the bit buffer length, // but the constranumber isn't checked. The given bit buffer is cloned and stored. function QrSegment(mode, numChars, bitData) { (0, _classCallCheck2.default)(this, QrSegment); /*-- Constructor (low level) and fields --*/ // The mode indicator of this segment. (0, _defineProperty2.default)(this, "mode", void 0); // The length of this segment's unencoded data. Measured in characters for // numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode. // Always zero or positive. Not the same as the data's bit length. (0, _defineProperty2.default)(this, "numChars", void 0); // The data bits of this segment. Accessed through getData(). (0, _defineProperty2.default)(this, "bitData", void 0); this.mode = mode; this.numChars = numChars; this.bitData = bitData; if (numChars < 0) { throw new RangeError('Invalid argument'); } this.bitData = bitData.slice(); // Make defensive copy } /*-- Methods --*/ // Returns a new copy of the data bits of this segment. (0, _createClass2.default)(QrSegment, [{ key: "getData", value: function getData() { return this.bitData.slice(); // Make defensive copy } // (Package-private) Calculates and returns the number of bits needed to encode the given segments at // the given version. The result is infinity if a segment has too many characters to fit its length field. }], [{ key: "makeBytes", value: /*-- Static factory functions (mid level) --*/ // Returns a segment representing the given binary data encoded in // byte mode. All input byte arrays are acceptable. Any text string // can be converted to UTF-8 bytes and encoded as a byte mode segment. function makeBytes(data) { var bb = []; var _iterator = (0, _createForOfIteratorHelper2.default)(data), _step; try { for (_iterator.s(); !(_step = _iterator.n()).done;) { var b = _step.value; appendBits(b, 8, bb); } } catch (err) { _iterator.e(err); } finally { _iterator.f(); } return new QrSegment(Mode.BYTE, data.length, bb); } // Returns a segment representing the given string of decimal digits encoded in numeric mode. }, { key: "makeNumeric", value: function makeNumeric(digits) { if (!QrSegment.isNumeric(digits)) { throw new RangeError('String contains non-numeric characters'); } var bb = []; for (var i = 0; i < digits.length;) { // Consume up to 3 digits per iteration var n = Math.min(digits.length - i, 3); appendBits(parseInt(digits.substring(i, i + n), 10), n * 3 + 1, bb); i += n; } return new QrSegment(Mode.NUMERIC, digits.length, bb); } // Returns a segment representing the given text string encoded in alphanumeric mode. // The characters allowed are: 0 to 9, A to Z (uppercase only), space, // dollar, percent, asterisk, plus, hyphen, period, slash, colon. }, { key: "makeAlphanumeric", value: function makeAlphanumeric(text) { if (!QrSegment.isAlphanumeric(text)) { throw new RangeError('String contains unencodable characters in alphanumeric mode'); } var bb = []; var i; for (i = 0; i + 2 <= text.length; i += 2) { // Process groups of 2 var temp = QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)) * 45; temp += QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i + 1)); appendBits(temp, 11, bb); } if (i < text.length) { // 1 character remaining appendBits(QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)), 6, bb); } return new QrSegment(Mode.ALPHANUMERIC, text.length, bb); } // Returns a new mutable list of zero or more segments to represent the given Unicode text string. // The result may use various segment modes and switch modes to optimize the length of the bit stream. }, { key: "makeSegments", value: function makeSegments(text) { // Select the most efficient segment encoding automatically if (text == '') { return []; } else if (QrSegment.isNumeric(text)) { return [QrSegment.makeNumeric(text)]; } else if (QrSegment.isAlphanumeric(text)) { return [QrSegment.makeAlphanumeric(text)]; } else { return [QrSegment.makeBytes(QrSegment.toUtf8ByteArray(text))]; } } // Returns a segment representing an Extended Channel Interpretation // (ECI) designator with the given assignment value. }, { key: "makeEci", value: function makeEci(assignVal) { var bb = []; if (assignVal < 0) { throw new RangeError('ECI assignment value out of range'); } else if (assignVal < 1 << 7) { appendBits(assignVal, 8, bb); } else if (assignVal < 1 << 14) { appendBits(2, 2, bb); appendBits(assignVal, 14, bb); } else if (assignVal < 1000000) { appendBits(6, 3, bb); appendBits(assignVal, 21, bb); } else { throw new RangeError('ECI assignment value out of range'); } return new QrSegment(Mode.ECI, 0, bb); } // Tests whether the given string can be encoded as a segment in numeric mode. // A string is encodable iff each character is in the range 0 to 9. }, { key: "isNumeric", value: function isNumeric(text) { return QrSegment.NUMERIC_REGEX.test(text); } // Tests whether the given string can be encoded as a segment in alphanumeric mode. // A string is encodable iff each character is in the following set: 0 to 9, A to Z // (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon. }, { key: "isAlphanumeric", value: function isAlphanumeric(text) { return QrSegment.ALPHANUMERIC_REGEX.test(text); } }, { key: "getTotalBits", value: function getTotalBits(segs, version) { var result = 0; var _iterator2 = (0, _createForOfIteratorHelper2.default)(segs), _step2; try { for (_iterator2.s(); !(_step2 = _iterator2.n()).done;) { var seg = _step2.value; var ccbits = seg.mode.numCharCountBits(version); if (seg.numChars >= 1 << ccbits) { return Infinity; // The segment's length doesn't fit the field's bit width } result += 4 + ccbits + seg.bitData.length; } } catch (err) { _iterator2.e(err); } finally { _iterator2.f(); } return result; } // Returns a new array of bytes representing the given string encoded in UTF-8. }, { key: "toUtf8ByteArray", value: function toUtf8ByteArray(input) { var str = encodeURI(input); var result = []; for (var i = 0; i < str.length; i++) { if (str.charAt(i) != '%') { result.push(str.charCodeAt(i)); } else { result.push(parseInt(str.substring(i + 1, i + 3), 16)); i += 2; } } return result; } /*-- Constants --*/ // Describes precisely all strings that are encodable in numeric mode. }]); return QrSegment; }(); /* * A QR Code symbol, which is a type of two-dimension barcode. * Invented by Denso Wave and described in the ISO/IEC 18004 standard. * Instances of this class represent an immutable square grid of dark and light cells. * The class provides static factory functions to create a QR Code from text or binary data. * The class covers the QR Code Model 2 specification, supporting all versions (sizes) * from 1 to 40, all 4 error correction levels, and 4 character encoding modes. * * Ways to create a QR Code object: * - High level: Take the payload data and call QrCode.encodeText() or QrCode.encodeBinary(). * - Mid level: Custom-make the list of segments and call QrCode.encodeSegments(). * - Low level: Custom-make the array of data codeword bytes (including * segment headers and final padding, excluding error correction codewords), * supply the appropriate version number, and call the QrCode() constructor. * (Note that all ways require supplying the desired error correction level.) */ (0, _defineProperty2.default)(QrSegment, "NUMERIC_REGEX", /^[0-9]*$/); // Describes precisely all strings that are encodable in alphanumeric mode. (0, _defineProperty2.default)(QrSegment, "ALPHANUMERIC_REGEX", /^[A-Z0-9 $%*+.\/:-]*$/); // The set of all legal characters in alphanumeric mode, // where each character value maps to the index in the string. (0, _defineProperty2.default)(QrSegment, "ALPHANUMERIC_CHARSET", '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:'); var QrCode = exports.QrCode = /*#__PURE__*/function () { // Creates a new QR Code with the given version number, // error correction level, data codeword bytes, and mask number. // This is a low-level API that most users should not use directly. // A mid-level API is the encodeSegments() function. function QrCode( // The version number of this QR Code, which is between 1 and 40 (inclusive). // This determines the size of this barcode. version, // The error correction level used in this QR Code. errorCorrectionLevel, dataCodewords, oriMsk) { (0, _classCallCheck2.default)(this, QrCode); /*-- Fields --*/ // The width and height of this QR Code, measured in modules, between // 21 and 177 (inclusive). This is equal to version * 4 + 17. (0, _defineProperty2.default)(this, "size", void 0); // The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive). // Even if a QR Code is created with automatic masking requested (mask = -1), // the resulting object still has a mask value between 0 and 7. (0, _defineProperty2.default)(this, "mask", void 0); // The modules of this QR Code (false = light, true = dark). // Immutable after constructor finishes. Accessed through getModule(). (0, _defineProperty2.default)(this, "modules", []); // Indicates function modules that are not subjected to masking. Discarded when constructor finishes. (0, _defineProperty2.default)(this, "isFunction", []); /*-- Constructor (low level) and fields --*/ // The version number of this QR Code, which is between 1 and 40 (inclusive). // This determines the size of this barcode. (0, _defineProperty2.default)(this, "version", void 0); // The error correction level used in this QR Code. (0, _defineProperty2.default)(this, "errorCorrectionLevel", void 0); var msk = oriMsk; this.version = version; this.errorCorrectionLevel = errorCorrectionLevel; // Check scalar arguments if (version < QrCode.MIN_VERSION || version > QrCode.MAX_VERSION) { throw new RangeError('Version value out of range'); } if (msk < -1 || msk > 7) { throw new RangeError('Mask value out of range'); } this.size = version * 4 + 17; // Initialize both grids to be size*size arrays of Boolean false var row = []; for (var i = 0; i < this.size; i++) { row.push(false); } for (var _i = 0; _i < this.size; _i++) { this.modules.push(row.slice()); // Initially all light this.isFunction.push(row.slice()); } // Compute ECC, draw modules this.drawFunctionPatterns(); var allCodewords = this.addEccAndInterleave(dataCodewords); this.drawCodewords(allCodewords); // Do masking if (msk == -1) { // Automatically choose best mask var minPenalty = 1000000000; for (var _i2 = 0; _i2 < 8; _i2++) { this.applyMask(_i2); this.drawFormatBits(_i2); var penalty = this.getPenaltyScore(); if (penalty < minPenalty) { msk = _i2; minPenalty = penalty; } this.applyMask(_i2); // Undoes the mask due to XOR } } assert(0 <= msk && msk <= 7); this.mask = msk; this.applyMask(msk); // Apply the final choice of mask this.drawFormatBits(msk); // Overwrite old format bits this.isFunction = []; } /*-- Accessor methods --*/ // Returns the color of the module (pixel) at the given coordinates, which is false // for light or true for dark. The top left corner has the coordinates (x=0, y=0). // If the given coordinates are out of bounds, then false (light) is returned. (0, _createClass2.default)(QrCode, [{ key: "getModule", value: function getModule(x, y) { return 0 <= x && x < this.size && 0 <= y && y < this.size && this.modules[y][x]; } // Modified to expose modules for easy access }, { key: "getModules", value: function getModules() { return this.modules; } /*-- Private helper methods for constructor: Drawing function modules --*/ // Reads this object's version field, and draws and marks all function modules. }, { key: "drawFunctionPatterns", value: function drawFunctionPatterns() { // Draw horizontal and vertical timing patterns for (var i = 0; i < this.size; i++) { this.setFunctionModule(6, i, i % 2 == 0); this.setFunctionModule(i, 6, i % 2 == 0); } // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) this.drawFinderPattern(3, 3); this.drawFinderPattern(this.size - 4, 3); this.drawFinderPattern(3, this.size - 4); // Draw numerous alignment patterns var alignPatPos = this.getAlignmentPatternPositions(); var numAlign = alignPatPos.length; for (var _i3 = 0; _i3 < numAlign; _i3++) { for (var j = 0; j < numAlign; j++) { // Don't draw on the three finder corners if (!(_i3 == 0 && j == 0 || _i3 == 0 && j == numAlign - 1 || _i3 == numAlign - 1 && j == 0)) { this.drawAlignmentPattern(alignPatPos[_i3], alignPatPos[j]); } } } // Draw configuration data this.drawFormatBits(0); // Dummy mask value; overwritten later in the constructor this.drawVersion(); } // Draws two copies of the format bits (with its own error correction code) // based on the given mask and this object's error correction level field. }, { key: "drawFormatBits", value: function drawFormatBits(mask) { // Calculate error correction code and pack bits var data = this.errorCorrectionLevel.formatBits << 3 | mask; // errCorrLvl is unumber2, mask is unumber3 var rem = data; for (var i = 0; i < 10; i++) { rem = rem << 1 ^ (rem >>> 9) * 0x537; } var bits = (data << 10 | rem) ^ 0x5412; // unumber15 assert(bits >>> 15 == 0); // Draw first copy for (var _i4 = 0; _i4 <= 5; _i4++) { this.setFunctionModule(8, _i4, getBit(bits, _i4)); } this.setFunctionModule(8, 7, getBit(bits, 6)); this.setFunctionModule(8, 8, getBit(bits, 7)); this.setFunctionModule(7, 8, getBit(bits, 8)); for (var _i5 = 9; _i5 < 15; _i5++) { this.setFunctionModule(14 - _i5, 8, getBit(bits, _i5)); } // Draw second copy for (var _i6 = 0; _i6 < 8; _i6++) { this.setFunctionModule(this.size - 1 - _i6, 8, getBit(bits, _i6)); } for (var _i7 = 8; _i7 < 15; _i7++) { this.setFunctionModule(8, this.size - 15 + _i7, getBit(bits, _i7)); } this.setFunctionModule(8, this.size - 8, true); // Always dark } // Draws two copies of the version bits (with its own error correction code), // based on this object's version field, iff 7 <= version <= 40. }, { key: "drawVersion", value: function drawVersion() { if (this.version < 7) { return; } // Calculate error correction code and pack bits var rem = this.version; // version is unumber6, in the range [7, 40] for (var i = 0; i < 12; i++) { rem = rem << 1 ^ (rem >>> 11) * 0x1f25; } var bits = this.version << 12 | rem; // unumber18 assert(bits >>> 18 == 0); // Draw two copies for (var _i8 = 0; _i8 < 18; _i8++) { var color = getBit(bits, _i8); var a = this.size - 11 + _i8 % 3; var b = Math.floor(_i8 / 3); this.setFunctionModule(a, b, color); this.setFunctionModule(b, a, color); } } // Draws a 9*9 finder pattern including the border separator, // with the center module at (x, y). Modules can be out of bounds. }, { key: "drawFinderPattern", value: function drawFinderPattern(x, y) { for (var dy = -4; dy <= 4; dy++) { for (var dx = -4; dx <= 4; dx++) { var dist = Math.max(Math.abs(dx), Math.abs(dy)); // Chebyshev/infinity norm var xx = x + dx; var yy = y + dy; if (0 <= xx && xx < this.size && 0 <= yy && yy < this.size) { this.setFunctionModule(xx, yy, dist != 2 && dist != 4); } } } } // Draws a 5*5 alignment pattern, with the center module // at (x, y). All modules must be in bounds. }, { key: "drawAlignmentPattern", value: function drawAlignmentPattern(x, y) { for (var dy = -2; dy <= 2; dy++) { for (var dx = -2; dx <= 2; dx++) this.setFunctionModule(x + dx, y + dy, Math.max(Math.abs(dx), Math.abs(dy)) != 1); } } // Sets the color of a module and marks it as a function module. // Only used by the constructor. Coordinates must be in bounds. }, { key: "setFunctionModule", value: function setFunctionModule(x, y, isDark) { this.modules[y][x] = isDark; this.isFunction[y][x] = true; } /*-- Private helper methods for constructor: Codewords and masking --*/ // Returns a new byte string representing the given data with the appropriate error correction // codewords appended to it, based on this object's version and error correction level. }, { key: "addEccAndInterleave", value: function addEccAndInterleave(data) { var ver = this.version; var ecl = this.errorCorrectionLevel; if (data.length != QrCode.getNumDataCodewords(ver, ecl)) { throw new RangeError('Invalid argument'); } // Calculate parameter numbers var numBlocks = QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver]; var blockEccLen = QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver]; var rawCodewords = Math.floor(QrCode.getNumRawDataModules(ver) / 8); var numShortBlocks = numBlocks - rawCodewords % numBlocks; var shortBlockLen = Math.floor(rawCodewords / numBlocks); // Split data numbero blocks and append ECC to each block var blocks = []; var rsDiv = QrCode.reedSolomonComputeDivisor(blockEccLen); for (var i = 0, k = 0; i < numBlocks; i++) { var dat = data.slice(k, k + shortBlockLen - blockEccLen + (i < numShortBlocks ? 0 : 1)); k += dat.length; var ecc = QrCode.reedSolomonComputeRemainder(dat, rsDiv); if (i < numShortBlocks) { dat.push(0); } blocks.push(dat.concat(ecc)); } // Interleave (not concatenate) the bytes from every block numbero a single sequence var result = []; var _loop = function _loop(_i9) { blocks.forEach(function (block, j) { // Skip the padding byte in short blocks if (_i9 != shortBlockLen - blockEccLen || j >= numShortBlocks) { result.push(block[_i9]); } }); }; for (var _i9 = 0; _i9 < blocks[0].length; _i9++) { _loop(_i9); } assert(result.length == rawCodewords); return result; } // Draws the given sequence of 8-bit codewords (data and error correction) onto the entire // data area of this QR Code. Function modules need to be marked off before this is called. }, { key: "drawCodewords", value: function drawCodewords(data) { if (data.length != Math.floor(QrCode.getNumRawDataModules(this.version) / 8)) { throw new RangeError('Invalid argument'); } var i = 0; // Bit index numbero the data // Do the funny zigzag scan for (var right = this.size - 1; right >= 1; right -= 2) { // Index of right column in each column pair if (right == 6) { right = 5; } for (var vert = 0; vert < this.size; vert++) { // Vertical counter for (var j = 0; j < 2; j++) { var x = right - j; // Actual x coordinate var upward = (right + 1 & 2) == 0; var y = upward ? this.size - 1 - vert : vert; // Actual y coordinate if (!this.isFunction[y][x] && i < data.length * 8) { this.modules[y][x] = getBit(data[i >>> 3], 7 - (i & 7)); i++; } // If this QR Code has any remainder bits (0 to 7), they were assigned as // 0/false/light by the constructor and are left unchanged by this method } } } assert(i == data.length * 8); } // XORs the codeword modules in this QR Code with the given mask pattern. // The function modules must be marked and the codeword bits must be drawn // before masking. Due to the arithmetic of XOR, calling applyMask() with // the same mask value a second time will undo the mask. A final well-formed // QR Code needs exactly one (not zero, two, etc.) mask applied. }, { key: "applyMask", value: function applyMask(mask) { if (mask < 0 || mask > 7) { throw new RangeError('Mask value out of range'); } for (var y = 0; y < this.size; y++) { for (var x = 0; x < this.size; x++) { var invert = void 0; switch (mask) { case 0: invert = (x + y) % 2 == 0; break; case 1: invert = y % 2 == 0; break; case 2: invert = x % 3 == 0; break; case 3: invert = (x + y) % 3 == 0; break; case 4: invert = (Math.floor(x / 3) + Math.floor(y / 2)) % 2 == 0; break; case 5: invert = x * y % 2 + x * y % 3 == 0; break; case 6: invert = (x * y % 2 + x * y % 3) % 2 == 0; break; case 7: invert = ((x + y) % 2 + x * y % 3) % 2 == 0; break; default: throw new Error('Unreachable'); } if (!this.isFunction[y][x] && invert) { this.modules[y][x] = !this.modules[y][x]; } } } } // Calculates and returns the penalty score based on state of this QR Code's current modules. // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. }, { key: "getPenaltyScore", value: function getPenaltyScore() { var result = 0; // Adjacent modules in row having same color, and finder-like patterns for (var y = 0; y < this.size; y++) { var runColor = false; var runX = 0; var runHistory = [0, 0, 0, 0, 0, 0, 0]; for (var x = 0; x < this.size; x++) { if (this.modules[y][x] == runColor) { runX++; if (runX == 5) { result += QrCode.PENALTY_N1; } else if (runX > 5) { result++; } } else { this.finderPenaltyAddHistory(runX, runHistory); if (!runColor) { result += this.finderPenaltyCountPatterns(runHistory) * QrCode.PENALTY_N3; } runColor = this.modules[y][x]; runX = 1; } } result += this.finderPenaltyTerminateAndCount(runColor, runX, runHistory) * QrCode.PENALTY_N3; } // Adjacent modules in column having same color, and finder-like patterns for (var _x = 0; _x < this.size; _x++) { var _runColor = false; var runY = 0; var _runHistory = [0, 0, 0, 0, 0, 0, 0]; for (var _y = 0; _y < this.size; _y++) { if (this.modules[_y][_x] == _runColor) { runY++; if (runY == 5) { result += QrCode.PENALTY_N1; } else if (runY > 5) { result++; } } else { this.finderPenaltyAddHistory(runY, _runHistory); if (!_runColor) { result += this.finderPenaltyCountPatterns(_runHistory) * QrCode.PENALTY_N3; } _runColor = this.modules[_y][_x]; runY = 1; } } result += this.finderPenaltyTerminateAndCount(_runColor, runY, _runHistory) * QrCode.PENALTY_N3; } // 2*2 blocks of modules having same color for (var _y2 = 0; _y2 < this.size - 1; _y2++) { for (var _x2 = 0; _x2 < this.size - 1; _x2++) { var color = this.modules[_y2][_x2]; if (color == this.modules[_y2][_x2 + 1] && color == this.modules[_y2 + 1][_x2] && color == this.modules[_y2 + 1][_x2 + 1]) { result += QrCode.PENALTY_N2; } } } // Balance of dark and light modules var dark = 0; var _iterator3 = (0, _createForOfIteratorHelper2.default)(this.modules), _step3; try { for (_iterator3.s(); !(_step3 = _iterator3.n()).done;) { var row = _step3.value; dark = row.reduce(function (sum, color) { return sum + (color ? 1 : 0); }, dark); } } catch (err) { _iterator3.e(err); } finally { _iterator3.f(); } var total = this.size * this.size; // Note that size is odd, so dark/total != 1/2 // Compute the smallest numbereger k >= 0 such that (45-5k)% <= dark/total <= (55+5k)% var k = Math.ceil(Math.abs(dark * 20 - total * 10) / total) - 1; assert(0 <= k && k <= 9); result += k * QrCode.PENALTY_N4; assert(0 <= result && result <= 2568888); // Non-tight upper bound based on default values of PENALTY_N1, ..., N4 return result; } /*-- Private helper functions --*/ // Returns an ascending list of positions of alignment patterns for this version number. // Each position is in the range [0,177), and are used on both the x and y axes. // This could be implemented as lookup table of 40 variable-length lists of numberegers. }, { key: "getAlignmentPatternPositions", value: function getAlignmentPatternPositions() { if (this.version == 1) { return []; } else { var numAlign = Math.floor(this.version / 7) + 2; var step = this.version == 32 ? 26 : Math.ceil((this.version * 4 + 4) / (numAlign * 2 - 2)) * 2; var result = [6]; for (var pos = this.size - 7; result.length < numAlign; pos -= step) { result.splice(1, 0, pos); } return result; } } // Returns the number of data bits that can be stored in a QR Code of the given version number, after // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. }, { key: "finderPenaltyCountPatterns", value: // Can only be called immediately after a light run is added, and // returns either 0, 1, or 2. A helper function for getPenaltyScore(). function finderPenaltyCountPatterns(runHistory) { var n = runHistory[1]; assert(n <= this.size * 3); var core = n > 0 && runHistory[2] == n && runHistory[3] == n * 3 && runHistory[4] == n && runHistory[5] == n; return (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0) + (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0); } // Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore(). }, { key: "finderPenaltyTerminateAndCount", value: function finderPenaltyTerminateAndCount(currentRunColor, oriCurrentRunLength, runHistory) { var currentRunLength = oriCurrentRunLength; if (currentRunColor) { // Terminate dark run this.finderPenaltyAddHistory(currentRunLength, runHistory); currentRunLength = 0; } currentRunLength += this.size; // Add light border to final run this.finderPenaltyAddHistory(currentRunLength, runHistory); return this.finderPenaltyCountPatterns(runHistory); } // Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore(). }, { key: "finderPenaltyAddHistory", value: function finderPenaltyAddHistory(oriCurrentRunLength, runHistory) { var currentRunLength = oriCurrentRunLength; if (runHistory[0] == 0) { currentRunLength += this.size; // Add light border to initial run } runHistory.pop(); runHistory.unshift(currentRunLength); } /*-- Constants and tables --*/ // The minimum version number supported in the QR Code Model 2 standard. }], [{ key: "encodeText", value: /*-- Static factory functions (high level) --*/ // Returns a QR Code representing the given Unicode text string at the given error correction level. // As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer // Unicode code ponumbers (not UTF-16 code units) if the low error correction level is used. The smallest possible // QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the // ecl argument if it can be done without increasing the version. function encodeText(text, ecl) { var segs = QrSegment.makeSegments(text); return QrCode.encodeSegments(segs, ecl); } // Returns a QR Code representing the given binary data at the given error correction level. // This function always encodes using the binary segment mode, not any text mode. The maximum number of // bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output. // The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version. }, { key: "encodeBinary", value: function encodeBinary(data, ecl) { var seg = QrSegment.makeBytes(data); return QrCode.encodeSegments([seg], ecl); } /*-- Static factory functions (mid level) --*/ // Returns a QR Code representing the given segments with the given encoding parameters. // The smallest possible QR Code version within the given range is automatically // chosen for the output. Iff boostEcl is true, then the ECC level of the result // may be higher than the ecl argument if it can be done without increasing the // version. The mask number is either between 0 to 7 (inclusive) to force that // mask, or -1 to automatically choose an appropriate mask (which may be slow). // This function allows the user to create a custom sequence of segments that switches // between modes (such as alphanumeric and byte) to encode text in less space. // This is a mid-level API; the high-level API is encodeText() and encodeBinary(). }, { key: "encodeSegments", value: function encodeSegments(segs, oriEcl) { var minVersion = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 1; var maxVersion = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : 40; var mask = arguments.length > 4 && arguments[4] !== undefined ? arguments[4] : -1; var boostEcl = arguments.length > 5 && arguments[5] !== undefined ? arguments[5] : true; if (!(QrCode.MIN_VERSION <= minVersion && minVersion <= maxVersion && maxVersion <= QrCode.MAX_VERSION) || mask < -1 || mask > 7) { throw new RangeError('Invalid value'); } // Find the minimal version number to use var version; var dataUsedBits; for (version = minVersion;; version++) { var _dataCapacityBits = QrCode.getNumDataCodewords(version, oriEcl) * 8; // Number of data bits available var usedBits = QrSegment.getTotalBits(segs, version); if (usedBits <= _dataCapacityBits) { dataUsedBits = usedBits; break; // This version number is found to be suitable } if (version >= maxVersion) { // All versions in the range could not fit the given data throw new RangeError('Data too long'); } } var ecl = oriEcl; // Increase the error correction level while the data still fits in the current version number for (var _i10 = 0, _arr = [Ecc.MEDIUM, Ecc.QUARTILE, Ecc.HIGH]; _i10 < _arr.length; _i10++) { var newEcl = _arr[_i10]; // From low to high if (boostEcl && dataUsedBits <= QrCode.getNumDataCodewords(version, newEcl) * 8) { ecl = newEcl; } } // Concatenate all segments to create the data bit string var bb = []; var _iterator4 = (0, _createForOfIteratorHelper2.default)(segs), _step4; try { for (_iterator4.s(); !(_step4 = _iterator4.n()).done;) { var seg = _step4.value; appendBits(seg.mode.modeBits, 4, bb); appendBits(seg.numChars, seg.mode.numCharCountBits(version), bb); var _iterator5 = (0, _createForOfIteratorHelper2.default)(seg.getData()), _step5; try { for (_iterator5.s(); !(_step5 = _iterator5.n()).done;) { var b = _step5.value; bb.push(b); } } catch (err) { _iterator5.e(err); } finally { _iterator5.f(); } } } catch (err) { _iterator4.e(err); } finally { _iterator4.f(); } assert(bb.length == dataUsedBits); // Add terminator and pad up to a byte if applicable var dataCapacityBits = QrCode.getNumDataCodewords(version, ecl) * 8; assert(bb.length <= dataCapacityBits); appendBits(0, Math.min(4, dataCapacityBits - bb.length), bb); appendBits(0, (8 - bb.length % 8) % 8, bb); assert(bb.length % 8 == 0); // Pad with alternating bytes until data capacity is reached for (var padByte = 0xec; bb.length < dataCapacityBits; padByte ^= 0xec ^ 0x11) { appendBits(padByte, 8, bb); } // Pack bits numbero bytes in big endian var dataCodewords = []; while (dataCodewords.length * 8 < bb.length) { dataCodewords.push(0); } bb.forEach(function (b, i) { dataCodewords[i >>> 3] |= b << 7 - (i & 7); }); // Create the QR Code object return new QrCode(version, ecl, dataCodewords, mask); } }, { key: "getNumRawDataModules", value: function getNumRawDataModules(ver) { if (ver < QrCode.MIN_VERSION || ver > QrCode.MAX_VERSION) { throw new RangeError('Version number out of range'); } var result = (16 * ver + 128) * ver + 64; if (ver >= 2) { var numAlign = Math.floor(ver / 7) + 2; result -= (25 * numAlign - 10) * numAlign - 55; if (ver >= 7) { result -= 36; } } assert(208 <= result && result <= 29648); return result; } // Returns the number of 8-bit data (i.e. not error correction) codewords contained in any // QR Code of the given version number and error correction level, with remainder bits discarded. // This stateless pure function could be implemented as a (40*4)-cell lookup table. }, { key: "getNumDataCodewords", value: function getNumDataCodewords(ver, ecl) { return Math.floor(QrCode.getNumRawDataModules(ver) / 8) - QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver] * QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver]; } // Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be // implemented as a lookup table over all possible parameter values, instead of as an algorithm. }, { key: "reedSolomonComputeDivisor", value: function reedSolomonComputeDivisor(degree) { if (degree < 1 || degree > 255) { throw new RangeError('Degree out of range'); } // Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1. // For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the unumber8 array [255, 8, 93]. var result = []; for (var i = 0; i < degree - 1; i++) { result.push(0); } result.push(1); // Start off with the monomial x^0 // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), // and drop the highest monomial term which is always 1x^degree. // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). var root = 1; for (var _i11 = 0; _i11 < degree; _i11++) { // Multiply the current product by (x - r^i) for (var j = 0; j < result.length; j++) { result[j] = QrCode.reedSolomonMultiply(result[j], root); if (j + 1 < result.length) { result[j] ^= result[j + 1]; } } root = QrCode.reedSolomonMultiply(root, 0x02); } return result; } // Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials. }, { key: "reedSolomonComputeRemainder", value: function reedSolomonComputeRemainder(data, divisor) { var result = divisor.map(function () { return 0; }); var _iterator6 = (0, _createForOfIteratorHelper2.default)(data), _step6; try { var _loop2 = function _loop2() { var b = _step6.value; // Polynomial division var factor = b ^ result.shift(); result.push(0); divisor.forEach(function (coef, i) { result[i] ^= QrCode.reedSolomonMultiply(coef, factor); }); }; for (_iterator6.s(); !(_step6 = _iterator6.n()).done;) { _loop2(); } } catch (err) { _iterator6.e(err); } finally { _iterator6.f(); } return result; } // Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result // are unsigned 8-bit numberegers. This could be implemented as a lookup table of 256*256 entries of unumber8. }, { key: "reedSolomonMultiply", value: function reedSolomonMultiply(x, y) { if (x >>> 8 != 0 || y >>> 8 != 0) { throw new RangeError('Byte out of range'); } // Russian peasant multiplication var z = 0; for (var i = 7; i >= 0; i--) { z = z << 1 ^ (z >>> 7) * 0x11d; z ^= (y >>> i & 1) * x; } assert(z >>> 8 == 0); return z; } }]); return QrCode; }(); (0, _defineProperty2.default)(QrCode, "MIN_VERSION", 1); // The maximum version number supported in the QR Code Model 2 standard. (0, _defineProperty2.default)(QrCode, "MAX_VERSION", 40); // For use in getPenaltyScore(), when evaluating which mask is best. (0, _defineProperty2.default)(QrCode, "PENALTY_N1", 3); (0, _defineProperty2.default)(QrCode, "PENALTY_N2", 3); (0, _defineProperty2.default)(QrCode, "PENALTY_N3", 40); (0, _defineProperty2.default)(QrCode, "PENALTY_N4", 10); (0, _defineProperty2.default)(QrCode, "ECC_CODEWORDS_PER_BLOCK", [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Low [-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28], // Medium [-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Quartile [-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30] // High ]); (0, _defineProperty2.default)(QrCode, "NUM_ERROR_CORRECTION_BLOCKS", [ // Version: (note that index 0 is for padding, and is set to an illegal value) //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level [-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], // Low [-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], // Medium [-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], // Quartile [-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81] // High ]);